\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Evolutionarily stable dispersal strategies in a two-patch advective environment

  • * Corresponding author: Yihao Fang

    * Corresponding author: Yihao Fang
Jing-jing Xiang is partially supported by the Research Foundation of Education Bureau of Shaanxi Province (15JK1433), "The mathematical modeling and analysis of disease spreading in media". Yihao Fang is partially supported by the National Natural Science Foundation of China(11571364).
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • Two-patch models are used to mimic the unidirectional movement of organisms in continuous, advective environments. We assume that species can move between two patches, with patch 1 as the upper stream patch and patch 2 as the downstream patch. Species disperse between two patches with the same rate, and species in patch 1 is transported to patch 2 by drift, but not vice versa. We also mimic no-flux boundary conditions at the upstream and zero Dirichlet boundary conditions at the downstream. The criteria for the persistence of a single species is established. For two competing species model, we show that there is an intermediate dispersal rate which is evolutionarily stable. These results support the conjecture in [6], initially proposed for reaction-diffusion models with continuous advective environments.

    Mathematics Subject Classification: Primary: 37X75; Secondary: 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of Lemma 3.6 for $0\leq q < 1$

    Figure 2.  Illustration of Lemma 3.7 for $1\leq q < 5/4$

    Figure 3.  PIP for $0<q < 1$ with the sign of $\lambda_1$

    Figure 4.  PIP for $1\leq q < 5/4$ with the sign of $\lambda_1$

  • [1] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, in Series in Mathematical and Computational Biology John Wiley and Sons, Chichester, UK, 2003. doi: 10.1002/0470871296.
    [2] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discre. Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.
    [3] U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.  doi: 10.1007/BF02409751.
    [4] A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24 (1983), 244-251.  doi: 10.1016/0040-5809(83)90027-8.
    [5] K.-Y. LamY. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), 244-251.  doi: 10.1080/17513758.2014.969336.
    [6] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.
    [7] Y. LouD. M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discre. Contin. Dyn. Syst. A, 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.
    [8] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.
    [9] F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.
    [10] F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.
    [11] H. L. Smith, Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems, in Math. Surveys Monogr., 41, Amer. Math. Soc., Providence, RI, 1995.
    [12] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
    [13] D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237. 
    [14] O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469. 
    [15] O. Vasilyeva and F. Lutscher, Competition in advective environments, Bull. Math. Biol., 74 (2012), 2935-2958.  doi: 10.1007/s11538-012-9792-3.
    [16] B. L. Xu and N. Liu, Optimal diffusion rate of species in flowing habitat, Advances in Difference Equations, 2017 (2017), Paper No. 266, 10 pp. doi: 10.1186/s13662-017-1326-8.
    [17] P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(591) PDF downloads(381) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return