\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symmetries of nonlinear vibrations in tetrahedral molecular configurations

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We study nonlinear vibrational modes of oscillations for tetrahedral configurations of particles. In the case of tetraphosphorus, the interaction of atoms is given by bond stretching and van der Waals forces. Using the equivariant gradient degree, we present a topological classification of the spatio-temporal symmetries of the periodic solutions with finite Weyl's group. This procedure describes all the symmetries of the nonlinear vibrations for general force fields.

    Mathematics Subject Classification: 37J45, 34C25, 37G40, 47H11, 70H33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Stationary solution to equation (2) with tetrahedral symmetries

  •   Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Vol. 1, 2006.
      Z. Balanov , W. Krawcewicz , S. Rybicki  and  H. Steinlein , A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 8 (2010) , 1-74.  doi: 10.1007/s11784-010-0033-9.
      Z. Balanov, W. Krawcewicz and H. Ruan, Periodic solutions to O(2) × S1-symmetric variational problems: Equivariant gradient degree approach, Nonlinear analysis and optimization Ⅱ. Optimization, Contemp. Math., Amer. Math. Soc., Providence, RI, 514 (2010), 45–84. doi: 10.1007/s11784-010-0033-9.
      I. Berezovik, Q. Hu and W. Krawcewicz, Dihedral molecular configurations interacting by Lennard-Jones and Coulomb forces, accepted in Discrete & Continuous Dynamical Systems - S, (2018) arXiv: 1702.04234.
      G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.
      T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, New York-Berlin, 1985. doi: 10.1007/978-3-662-12918-0.
      F. G. Browder  and  W. V. Petryshyn , Approximation methods and the generalized topological degree for non-linear mappings in a Banach space, J. Functional Anal., 3 (1969) , 217-245. 
      M. Dabkowski, W. Krawcewicz and Y. Lv, H-P. Wu, Multiple periodic solutions for $Γ$-symmetric Newtonian systems, J. Differential Equations, 263 (2017), 6684-6730.
      T. tom Dieck, Transformation Groups, Walter de Gruyter, 1987. doi: 10.1515/9783110858372.312.
      K. Efstathiou , D. A. Sadovskii  and  B. I. Zhilinskii , Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule, SIAM J. Appl. Dyn. Sys., 3 (2004) , 261-351.  doi: 10.1137/030600015.
      J. Fura , A. Ratajczak  and  S. Rybicki , Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Diff. Eqns, 218 (2005) , 216-252.  doi: 10.1016/j.jde.2005.04.004.
      C. García-Azpeitia  and  J. Ize , Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the n-body problem, J. Differential Equations, 254 (2013) , 2033-2075.  doi: 10.1016/j.jde.2012.08.022.
      C. García-Azpeitia  and  M. Tejada-Wriedt , Molecular chains interacting by Lennard-Jones and Coulomb forces, Qualitative Theory of Dynamical Systems, 16 (2017) , 591-608.  doi: 10.1007/s12346-016-0221-0.
      K. Gȩba, Degree for gradient equivariant maps and equivariant Conley index, in Topological Nonlinear Analysis Ⅱ (Frascati, 1995), Progr. Nonlinear Differential Equations A, Birkhäuser, Boston, 27 (1997), 247–272.
      E. Goursat , Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales scientifiques de l'École Normale Supérieure, 6 (1889) , 9-102.  doi: 10.24033/asens.317.
      J. Ize and A. Vignoli, Equivariant Degree Theory, vol.8 of De Gruyter Series in Nonlinear Analysis and Applications, Berlin, Boston: De Gruyter., 2003. doi: 10.1515/9783110200027.
      K. Kawakubo, The Theory of Transformation Groups, The Clarendon Press, Oxford University Press, 1991.
      W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, John Wiley & Sons, Inc., 1997.
      J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Math. Sciences, Vol. 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.
      J. Montaldi, M. Roberts and I. Stewart, Nonlinear normal modes of symmetric Hamiltonian systems, The Physics of Structure Formation, 354–371, Springer Ser. Synergetics, 37, Springer, Berlin, 1987. doi: 10.1007/978-3-642-73001-6_28.
      J. Montaldi , M. Roberts  and  I. Stewart , Periodic solutions near equilibria of symmetric Hamiltonian systems, Philos. Trans. Roy. Soc. London, Ser. A, 325 (1988) , 237-293.  doi: 10.1098/rsta.1988.0053.
      A. Weinstein , Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973) , 47-57.  doi: 10.1007/BF01405263.
      H-P. Wu, GAP program for the computations of the Burnside ring $A(Γ× O(2))$, https://bitbucket.org/psistwu/gammao2, developed at University of Texas at Dallas, 2016.
      H. Ruan  and  S. Rybicki , Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal., 68 (2008) , 1479-1516.  doi: 10.1016/j.na.2006.12.039.
      S. Rybicki , Applications of degree for $S^1$-equivariant gradient maps to variational nonlinear problems with $S^1$-symmetries, Topol. Methods Nonlinear Anal., 9 (1997) , 383-417.  doi: 10.12775/TMNA.1997.018.
      E. H. Spanier, Algebraic Topology, McGraw-Hill Book Co, New York-Toronto-London, 1966.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(939) PDF downloads(303) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return