In this paper we investigate the reduced gravity two and a half model in oceanic fluid dynamics. In a finite domain (for the initial-boundary value problem), we obtain time-independent estimates, which allow us to show the existence and uniqueness of regular solutions as well as the decay rate estimates. A collection of the decay rate estimates for $h_i-\widetilde{h}_i$ (with $\widetilde{h}_i$ being the stationary layer thickness) and $u_i(i = 1,2)$ in $L^2(Ω)$-norm as well as $H^1(Ω)$-norm as time $t \to \infty $ are established.
Citation: |
[1] |
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8.![]() ![]() ![]() |
[2] |
D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.
doi: 10.1081/PDE-120020499.![]() ![]() ![]() |
[3] |
D. Bresch and B. Desjardins, Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressible avec température, C. R. Math. Acad. Sci., 343 (2006), 219-224.
doi: 10.1016/j.crma.2006.05.016.![]() ![]() ![]() |
[4] |
Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004.![]() ![]() ![]() |
[5] |
H. B. Cui, L. Yao and Z. A. Yao, Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model, Commun. Pure Appl. Anal., 14 (2015), 981-1000.
doi: 10.3934/cpaa.2015.14.981.![]() ![]() ![]() |
[6] |
R. Duan and C. H. Zhou, On the compactness of the reduced-gravity two-and-a-half layer equations, J. Differential Equations, 252 (2012), 3506-3519.
doi: 10.1016/j.jde.2011.12.012.![]() ![]() ![]() |
[7] |
R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 57 (2008), 2299-2319.
doi: 10.1512/iumj.2008.57.3326.![]() ![]() ![]() |
[8] |
S. Evje, H. Y. Wen and L. Yao, Global solutions to a one-dimensional non-conservative two-phase model, Discrete Contin. Dyn. Syst., 36 (2016), 1927-1955.
doi: 10.3934/dcds.2016.36.1927.![]() ![]() ![]() |
[9] |
D. Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Commun. Pure Appl. Anal., 3 (2004), 675-694.
doi: 10.3934/cpaa.2004.3.675.![]() ![]() ![]() |
[10] |
Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.
doi: 10.1080/03605302.2012.696296.![]() ![]() ![]() |
[11] |
Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J.Math. Anal., 39 (2008), 1402-1427.
doi: 10.1137/070680333.![]() ![]() ![]() |
[12] |
Z. H. Guo, H. L. Li and Z. P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Comm. Math. Phys., 309 (2012), 371-412.
doi: 10.1007/s00220-011-1334-6.![]() ![]() ![]() |
[13] |
Z. H. Guo, Z. L. Li and L. Yao, Existence of global weak solution for a reduced gravity two and a half layer model,
J. Math. Phys., 54 (2013), 121503, 19 pp.
doi: 10.1063/1.4836775.![]() ![]() ![]() |
[14] |
X. D. Huang and J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data, J. Math. Pures Appl., 106 (2016), 123-154.
doi: 10.1016/j.matpur.2016.02.003.![]() ![]() ![]() |
[15] |
S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251.
doi: 10.4310/MAA.2005.v12.n3.a2.![]() ![]() ![]() |
[16] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differential Equations, 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014.![]() ![]() ![]() |
[17] |
Q. S. Jiu, Y. Wang and Z. P. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483-521.
doi: 10.1007/s00021-014-0171-8.![]() ![]() ![]() |
[18] |
D. L. Li, The Green's function of the Navier-Stokes equations for gas dynamics in R3, Comm. Math. Phys., 257 (2005), 579-619.
doi: 10.1007/s00220-005-1351-4.![]() ![]() ![]() |
[19] |
H. L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in R3, Math. Methods Appl. Sci., 34 (2011), 670-682.
doi: 10.1002/mma.1391.![]() ![]() ![]() |
[20] |
J. Li and Z. P. Xin, Global existence of weak solution to the barotropic compressible Navier-Stokes flows with degenerate viscosities, arXiv: 1504.06826.
![]() |
[21] |
T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1-32.
doi: 10.3934/dcds.1996.2.1.![]() ![]() ![]() |
[22] |
A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.
doi: 10.1080/03605300600857079.![]() ![]() ![]() |
[23] |
I. Straškraba and A. Zlotnik, On a decay rate for 1D-viscous compressible barotropic fluid equations, J. Evol. Equ., 2 (2002), 69-96.
doi: 10.1007/s00028-002-8080-3.![]() ![]() ![]() |
[24] |
I. Straškraba and A. Zlotnik, Global properties of solutions to 1D-viscous compressible barotropic fluid equations with density dependent viscosity, Z. Angew. Math. Phys., 54 (2003), 593-607.
doi: 10.1007/s00033-003-1009-z.![]() ![]() ![]() |
[25] |
V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the twodimensional Navier-Stokes equations for a compressible viscous fluid, Sib. Math. J., 36 (1995), 1283-1316.
doi: 10.1007/BF02106835.![]() ![]() ![]() |
[26] |
G. K. Vallis,
Atmospheric and oceanic fluid dynamics: Fundamentals and large-scale circulation, Cambridge University Press, 2006.
![]() |
[27] |
A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.
doi: 10.1007/s00222-016-0666-4.![]() ![]() ![]() |
[28] |
S. W. Vong, T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (Ⅱ), J. Differential Equations, 192 (2003), 475-501.
doi: 10.1016/S0022-0396(03)00060-3.![]() ![]() ![]() |
[29] |
W. K. Wang and X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions, J. Hyperbolic Differ. Equ., 2 (2005), 673-695.
doi: 10.1142/S0219891605000580.![]() ![]() ![]() |
[30] |
L. Yao, Z. L. Li and W. J. Wang, Existence of spherically symmetric solutions for a reduced gravity two-and-a-half layer system, J. Differential Equations, 261 (2016), 1637-1668.
doi: 10.1016/j.jde.2016.04.012.![]() ![]() ![]() |
[31] |
T. Yang, Z. A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.
doi: 10.1081/PDE-100002385.![]() ![]() ![]() |
[32] |
T. Yang and H. J. Zhao, A vacuum problem for the one-dimensional Compressible Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 184 (2002), 163-184.
doi: 10.1006/jdeq.2001.4140.![]() ![]() ![]() |
[33] |
T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.
doi: 10.1007/s00220-002-0703-6.![]() ![]() ![]() |