Article Contents
Article Contents

# Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study

This work has been partially supported by FEDER and the Spanish Ministerio de Economía y Competitividad project MTM2015-63723-P and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492

• In this article we consider a model introduced by Ucar in order to simply describe chaotic behaviour with a one dimensional ODE containing a constant delay. We study the bifurcation problem of the equilibria and we obtain an approximation of the periodic orbits generated by the Hopf bifurcation. Moreover, we propose and analyse a more general model containing distributed time delay. Finally, we propose some ideas for further study. All the theoretical results are supported and illustrated by numerical simulations.

Mathematics Subject Classification: 35B32, 74H65, 34K60.

 Citation:

• Figure 1.  The solution starting on the left hand side of $O$ converges to $P_- = -1$, while that starting on the right hand side of $O$ converges to $P_+ = 1$.

Figure 2.  The solution starting on the left hand side of $O$ converges to a limit cycle around $P_-$, while that starting on the right hand side of $O$ converges to a limit cycle around $P_+$.

Figure 3.  The solution $x(t)$ and the graph of $(x(t),x'(t))$ for $\delta = \varepsilon = 1$ and $\tau = 1.72$. The attractor appears to be chaotic.

Figure 4.  The numerical solution (in red) together with its approximation (in blue) given by (20).

Figure 5.  For $m = 1$, the fixed points $P_\pm$ are locally asymptotically stable for all $T\geq0$.

Figure 6.  For m = 2 and $T = 0.9<T_*$ the fixed points $P_\pm$ are locally asymptotically stable.

Figure 7.  For m = 2 and $T = 2>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.

Figure 8.  For $m = 3$ and $T = 0.6<T_*$ the fixed points $P_\pm$ are locally asymptotically stabel

Figure 9.  For $m = 3$ and $T = 0.7>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.

Figure 10.  The solution of sytem (34) for $T = 2$ and $\tau = 5$. Numerical simulations suggest the evidence of a chaotic behaviour.

Figure 11.  The solution of sytem (36) for $T = 1.6$ and $\tau = 1.14$. Numerical simulations suggest the evidence of a chaotic behaviour, this is supported by the presence of a strange attractor similar to the famous Lorenz attractor.

•  S. Bhalekar , Dynamics of fractional order complex Ucar system, Studies in Computational Intelligence, 688 (2017) , 747-771. S. Bhalekar, Stability and bifurcation analysis of a generalised scalar delay differential equation, Chaos, 26 (2016), 084306, 7pp. doi: 10.1063/1.4958923. S. Bhalekar , On the Ucar prototype model with incommensurate delays, Signal, Image and Video Processing, 8 (2014) , 635-639.  doi: 10.1007/s11760-013-0595-2. T. Caraballo , R. Colucci  and  L. Guerrini , On a predator prey model with nonlinear harvesting and distributed delay, Comm. Pure and Appl. Anal., 17 (2018) , 2703-2727.  doi: 10.3934/cpaa.2018128. C. W. Eurich, A. Thiel and L. Fahse, Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94 (2005), 158104. doi: 10.1103/PhysRevLett.94.158104. E. Karaoglu , E. Yilmaz  and  H. Merdan , Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays, Nonlinear Dyn, 85 (2016) , 1039-1051.  doi: 10.1007/s11071-016-2742-0. E. Karaoglu , E. Yilmaz  and  H. Merdan , Stability and bifurcation analysis of two-neuron network with discrete and distributed delays, Neurocomputing, 182 (2016) , 102-110.  doi: 10.1016/j.neucom.2015.12.006. C. Li , X. Liao  and  J. Yu , Hopf bifurcation in a prototype delayed system, Chaos, Solitons and Fractals, 19 (2004) , 779-787.  doi: 10.1016/S0960-0779(03)00206-6. X. Li  and  J. Wu , Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016) , 63-69.  doi: 10.1016/j.automatica.2015.10.002. X. Li  and  S. Song , Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017) , 406-411.  doi: 10.1109/TAC.2016.2530041. X. Li  and  J. Cao , An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017) , 3618-3625.  doi: 10.1109/TAC.2017.2669580. N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978. N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University. 1989. A. Matsumoto  and  F. Szidarovszky , Delay dynamics in a classical IS-LM model with tax collections, Metroeconomica, 67 (2016) , 667-697.  doi: 10.1111/meca.12128. A. Matsumoto  and  F. Szidarovszky , Dynamic monopoly with multiple continuously distributed time delays, Mathematics and Computers in Simulation, 108 (2015) , 99-118.  doi: 10.1016/j.matcom.2014.01.003. A. Matsumoto and F. Szidarovszky, Boundedly rational monopoly with single continuously distributed time delay, Nonlinear Economic Dynamics and Financial Modelling, Essays in Honour of Carl Chiarella, May 2014, Pages 83-107. A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981. A. Ucar , A prototype model for chaos studies, International Journal of Engineering Science, 40 (2001) , 251-258.  doi: 10.1016/S0020-7225(01)00060-X. A. Ucar , On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Solitons and Fractals, 16 (2003) , 187-194.

Figures(11)