In this paper, we consider radial solutions of the Poisson-Nernst-Planck (PNP) system with variable dielectric coefficients $\varepsilon g(x)$ in $N$-dimensional annular domains, $N≥2$. When the parameter $\varepsilon$ tends to zero, the PNP system admits a boundary layer solution as a steady state, which satisfies the charge conserving Poisson-Boltzmann (CCPB) equation. For the stability of the radial boundary layer solutions to the time-dependent radial PNP system, we estimate the radial solution of the perturbed problem with global electroneutrality. We generalize the argument of the one spatial dimension case (cf. [
Citation: |
G. Allaire
, J.-F. Dufrêche
, A. Mikelić
and A. Piatnitski
, Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media, Nonlinearity, 26 (2013)
, 881-910.
doi: 10.1088/0951-7715/26/3/881.![]() ![]() ![]() |
|
A. Arnold
, P. Markowich
and G. Toscani
, On large time asymptotics for drift-diffusion Poisson systems, Transport Theory Statist. Phys., 29 (2000)
, 571-581.
doi: 10.1080/00411450008205893.![]() ![]() ![]() |
|
V. Barcilon
, D.-P. Chen
, R. S. Eisenberg
and J. W. Jerome
, Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J. Appl. Math., 57 (1997)
, 631-648.
doi: 10.1137/S0036139995312149.![]() ![]() ![]() |
|
M. Z. Bazant
, K. T. Chu
and B. J. Bayly
, Current-voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005)
, 1463-1484.
doi: 10.1137/040609938.![]() ![]() ![]() |
|
P. Biler
and J. Dolbeault
, Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000)
, 461-472.
doi: 10.1007/s000230050003.![]() ![]() ![]() |
|
P. Biler
, W. Hebisch
and T. Nadzieja
, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994)
, 1189-1209.
doi: 10.1016/0362-546X(94)90101-5.![]() ![]() ![]() |
|
D. Bothe
, A. Fischer
and J. Saal
, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014)
, 1263-1316.
doi: 10.1137/120880926.![]() ![]() ![]() |
|
J. Cartailler
, Z. Schuss
and D. Holcman
, Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains, Phys. D, 339 (2017)
, 39-48.
doi: 10.1016/j.physd.2016.09.001.![]() ![]() ![]() |
|
D. Chen
, J. Lear
and B. Eisenberg
, Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel, Biophys J., 72 (1997)
, 97-116.
doi: 10.1016/S0006-3495(97)78650-8.![]() ![]() |
|
B. Eisenberg
, Ionic channels in biological membranes: Natural nanotubes, Acc. Chem. Res., 31 (1998)
, 117-123.
doi: 10.1021/ar950051e.![]() ![]() |
|
B. Eisenberg
and W. Liu
, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007)
, 1932-1966.
doi: 10.1137/060657480.![]() ![]() ![]() |
|
A. Friedman
and K. Tintarev
, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Differential Equations, 69 (1987)
, 15-38.
doi: 10.1016/0022-0396(87)90100-8.![]() ![]() ![]() |
|
H. Gajewski
, On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech., 65 (1985)
, 101-108.
doi: 10.1002/zamm.19850650210.![]() ![]() ![]() |
|
H. Gajewski
and K. Gröger
, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986)
, 12-35.
doi: 10.1016/0022-247X(86)90330-6.![]() ![]() ![]() |
|
D. Gillespie
, W. Nonner
and R. S. Eisenberg
, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys.: Condens. Matter, 14 (2002)
, 12129-12145.
doi: 10.1088/0953-8984/14/46/317.![]() ![]() |
|
B. Hille, Ion Channels of Excitable Membranes, 3rd edition, Sinauer Associates, Inc., 2001.
![]() |
|
C.-Y. Hsieh
, Y. Hyon
, H. Lee
, T.-C. Lin
and C. Liu
, Transport of charged particles: Entropy production and maximum dissipation principle, J. Math. Anal. Appl., 422 (2015)
, 309-336.
doi: 10.1016/j.jmaa.2014.07.078.![]() ![]() ![]() |
|
C.-Y. Hsieh
and T.-C. Lin
, Exponential decay estimates for the stability of boundary layer solutions to Poisson-Nernst-Planck systems: one spatial dimension case, SIAM J. Math. Anal., 47 (2015)
, 3442-3465.
doi: 10.1137/140994095.![]() ![]() ![]() |
|
R. J. Hunter, Zeta Potential in Colloid Science, Academic Press Inc., 1981.
![]() |
|
M. S. Kilic, M. Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅰ. Double-layer charging, Phys. Rev. E, 75 (2007), 021502.
doi: 10.1103/PhysRevE.75.021502.![]() ![]() |
|
M. S. Kilic
, M. Z. Bazant
and A. Ajdari
, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75 (2007)
, 021503.
doi: 10.1103/PhysRevE.75.021503.![]() ![]() |
|
D. Lacoste
, G. I. Menon
, M. Z. Bazant
and J. F. Joanny
, Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane, Eur. Phys. J. E, 28 (2009)
, 243-264.
doi: 10.1140/epje/i2008-10433-1.![]() ![]() |
|
C.-C. Lee
, Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients, Discrete Contin. Dyn. Syst., 36 (2016)
, 3251-3276.
doi: 10.3934/dcds.2016.36.3251.![]() ![]() ![]() |
|
C.-C. Lee
, H. Lee
, Y. Hyon
, T.-C. Lin
and C. Liu
, New Poisson-Boltzmann type equations: One-dimensional solutions, Nonlinearity, 24 (2011)
, 431-458.
doi: 10.1088/0951-7715/24/2/004.![]() ![]() ![]() |
|
C.-C. Lee, T.-C. Lin and J.-H. Lyu, Boundary layer solutions of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients for radially symmetric case, preprint.
![]() |
|
T.-C. Lin
and B. Eisenberg
, A new approach to the Lennard-Jones potential and a new model: PNP-steric equations, Commun. Math. Sci., 12 (2014)
, 149-173.
doi: 10.4310/CMS.2014.v12.n1.a7.![]() ![]() ![]() |
|
P. Liu
, X. Ji
and Z. Xu
, Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in variable media, SIAM J. Appl. Math., 78 (2018)
, 226-245.
doi: 10.1137/16M110383X.![]() ![]() ![]() |
|
W. Liu
, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005)
, 754-766.
doi: 10.1137/S0036139903420931.![]() ![]() ![]() |
|
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, SpringerVerlag, Vienna, 1990.
doi: 10.1007/978-3-7091-6961-2.![]() ![]() ![]() |
|
Y. Mori
, J. W. Jerome
and C. S. Peskin
, A three-dimensional model of cellular electrical activity, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007)
, 367-390.
![]() ![]() |
|
J. H. Park
and J. W. Jerome
, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57 (1997)
, 609-630.
doi: 10.1137/S0036139995279809.![]() ![]() ![]() |
|
O. J. Riveros
, T. L. Croxton
and W. M. Armstrong
, Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations, J. Theor. Biol., 140 (1989)
, 221-230.
doi: 10.1016/S0022-5193(89)80130-4.![]() ![]() |
|
I. Rubinstein
, Counterion condensation as an exact limiting property of solutions of the Poisson-Boltzmann equation, SIAM J. Appl. Math., 46 (1986)
, 1024-1038.
doi: 10.1137/0146061.![]() ![]() ![]() |
|
W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, 1989.
doi: 10.1017/CBO9780511608810.![]() ![]() |
|
R. Ryham
, C. Liu
and Z.-Q. Wang
, On electro-kinetic fluids: One dimensional configurations, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006)
, 357-371.
![]() ![]() |
|
R. Ryham
, C. Liu
and L. Zikatanov
, Mathematical models for the deformation of electrolyte droplets, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007)
, 649-661.
doi: 10.3934/dcdsb.2007.8.649.![]() ![]() ![]() |
|
L. Wan, S. Xu, M. Liao, C. Liu and P. Sheng, Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model, Phys. Rev. X, 4 (2014), 011042.
doi: 10.1103/PhysRevX.4.011042.![]() ![]() |
|
Y. Wang
, C. Liu
and Z. Tan
, A generalized Poisson-Nernst-Planck-Navier-Stokes model on the fluid with the crowded charged particles: derivation and its well-posedness, SIAM J. Math. Anal., 48 (2016)
, 3191-3235.
doi: 10.1137/16M1055104.![]() ![]() ![]() |
|
S. Xu
, P. Sheng
and C. Liu
, An energetic variational approach for ion transport, Commun. Math. Sci., 12 (2014)
, 779-789.
doi: 10.4310/CMS.2014.v12.n4.a9.![]() ![]() ![]() |
|
J. Zhang, X. Gong, C. Liu, W. Wen and P. Sheng, Electrorheological fluid dynamics, Phys. Rev. Lett., 101 (2008), 194503.
doi: 10.1063/1.2897856.![]() ![]() |
|
F. Ziebert, M. Z. Bazant and D. Lacoste, Effective zero-thickness model for a conductive membrane driven by an electric field, Phys. Rev. E, 81 (2010), 031912.
doi: 10.1103/PhysRevE.81.031912.![]() ![]() |