• Previous Article
    Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty
August  2019, 24(8): 3525-3535. doi: 10.3934/dcdsb.2018276

Convergences of asymptotically autonomous pullback attractors towards semigroup attractors

School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China

Dedicated to Professor Peter Kloeden on his 70th birthday

Received  November 2017 Revised  May 2018 Published  August 2019 Early access  October 2018

For pullback attractors of asymptotically autonomous dynamical systems we study the convergences of their components towards the global attractors of the limiting semigroups. We use some conditions of uniform boundedness of pullback attractors, instead of uniform compactness conditions used in the literature. Both forward convergence and backward convergence are studied.

Citation: Hongyong Cui. Convergences of asymptotically autonomous pullback attractors towards semigroup attractors. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3525-3535. doi: 10.3934/dcdsb.2018276
References:
[1]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Vol. 182, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.

[3]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 3379-3407.  doi: 10.3934/dcdsb.2017142.

[4]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, submitted.

[5]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Physica D: Nonlinear Phenomena, 374-375 (2018), 21-34.  doi: 10.1016/j.physd.2018.03.002.

[6]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Discrete and Continuous Dynamical Systems - Series S. Page in press.

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225–1268. http://www.sciencedirect.com/science/article/pii/S0022039617301535.

[8]

H. CuiJ. A. LangaY. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, 26 (2018), 493-530.  doi: 10.1007/s11228-016-0395-2.

[9]

P. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proceedings of the American Mathematical Society, 144 (2016), 259-268.  doi: 10.1090/proc/12735.

[10]

P. E. Kloeden, T. Lorenz and M. Yang, Forward Attractors in Discrete Time Nonautonomous Dynamical Systems, in Differential and Difference Equations with Application, Springer International Publishing, 2015,313-322. doi: 10.1007/978-3-319-32857-7_29.

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire solutions, Journal of Dynamics and Differential Equations, 23 (2011), 437-450.  doi: 10.1007/s10884-010-9196-8.

[12]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701.  doi: 10.1080/10236198.2011.578070.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc., 2011. doi: 10.1090/surv/176.

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, Journal of Mathematical Analysis and Applications, 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, Journal of Mathematical Analysis and Applications, 445 (2017), 513-531.  doi: 10.1016/j.jmaa.2016.08.004.

[16]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, Journal of Difference Equations & Applications, 22 (2015), 513-525.  doi: 10.1080/10236198.2015.1107550.

[17]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, Journal of Mathematical Analysis and Applications, 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.

[18]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete and Continuous Dynamical Systems - Series B, 23 (2018), 1535-1557.  doi: 10.3934/dcdsb.2018058.

[19]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.

[20]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971.

[21]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb{R}^n$, Frontiers of Mathematics in China, 4 (2009), 563-583.  doi: 10.1007/s11464-009-0033-5.

[22]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Analysis: Theory Methods & Applications, 59 (2004), 35-53.  doi: 10.1016/j.na.2004.03.035.

[23]

Y. WangL. Wang and W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equations in unbounded domains, Journal of Mathematical Analysis & Applications, 336 (2007), 330-347.  doi: 10.1016/j.jmaa.2007.02.081.

[24]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Applied Mathematics Letters, 61 (2016), 73-79.  doi: 10.1016/j.aml.2016.05.010.

show all references

References:
[1]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Vol. 182, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.

[3]

H. CuiM. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 3379-3407.  doi: 10.3934/dcdsb.2017142.

[4]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, submitted.

[5]

H. CuiP. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Physica D: Nonlinear Phenomena, 374-375 (2018), 21-34.  doi: 10.1016/j.physd.2018.03.002.

[6]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Discrete and Continuous Dynamical Systems - Series S. Page in press.

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, Journal of Differential Equations, 263 (2017), 1225–1268. http://www.sciencedirect.com/science/article/pii/S0022039617301535.

[8]

H. CuiJ. A. LangaY. Li and J. Valero, Attractors for multi-valued non-autonomous dynamical systems: Relationship, characterization and robustness, Set-Valued and Variational Analysis, 26 (2018), 493-530.  doi: 10.1007/s11228-016-0395-2.

[9]

P. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proceedings of the American Mathematical Society, 144 (2016), 259-268.  doi: 10.1090/proc/12735.

[10]

P. E. Kloeden, T. Lorenz and M. Yang, Forward Attractors in Discrete Time Nonautonomous Dynamical Systems, in Differential and Difference Equations with Application, Springer International Publishing, 2015,313-322. doi: 10.1007/978-3-319-32857-7_29.

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire solutions, Journal of Dynamics and Differential Equations, 23 (2011), 437-450.  doi: 10.1007/s10884-010-9196-8.

[12]

P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, Journal of Difference Equations and Applications, 18 (2012), 693-701.  doi: 10.1080/10236198.2011.578070.

[13]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Number 176, American Mathematical Soc., 2011. doi: 10.1090/surv/176.

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, Journal of Mathematical Analysis and Applications, 425 (2015), 911-918.  doi: 10.1016/j.jmaa.2014.12.069.

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, Journal of Mathematical Analysis and Applications, 445 (2017), 513-531.  doi: 10.1016/j.jmaa.2016.08.004.

[16]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, Journal of Difference Equations & Applications, 22 (2015), 513-525.  doi: 10.1080/10236198.2015.1107550.

[17]

Y. LiL. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, Journal of Mathematical Analysis and Applications, 459 (2018), 1106-1123.  doi: 10.1016/j.jmaa.2017.11.033.

[18]

Y. LiL. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete and Continuous Dynamical Systems - Series B, 23 (2018), 1535-1557.  doi: 10.3934/dcdsb.2018058.

[19]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Vol. 28, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.

[20]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971.

[21]

B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on $\mathbb{R}^n$, Frontiers of Mathematics in China, 4 (2009), 563-583.  doi: 10.1007/s11464-009-0033-5.

[22]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Analysis: Theory Methods & Applications, 59 (2004), 35-53.  doi: 10.1016/j.na.2004.03.035.

[23]

Y. WangL. Wang and W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equations in unbounded domains, Journal of Mathematical Analysis & Applications, 336 (2007), 330-347.  doi: 10.1016/j.jmaa.2007.02.081.

[24]

B. ZhuL. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Applied Mathematics Letters, 61 (2016), 73-79.  doi: 10.1016/j.aml.2016.05.010.

[1]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[2]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[3]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[4]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[5]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure and Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[6]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[7]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[8]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[9]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[10]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[11]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[12]

Na Lei, Shengfan Zhou. Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 73-108. doi: 10.3934/dcds.2021108

[13]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[14]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[15]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[16]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[17]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[18]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[19]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[20]

Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021276

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (309)
  • HTML views (607)
  • Cited by (2)

Other articles
by authors

[Back to Top]