
-
Previous Article
Modeling and analysis of random and stochastic input flows in the chemostat model
- DCDS-B Home
- This Issue
-
Next Article
On asymptotically autonomous dynamics for multivalued evolution problems
Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping
1. | Miquel Rosselló i Alemany, 51, 7 B, Palma de Mallorca, Spain |
2. | Universidad Miguel Hernández de Elche, Centro de Investigación Operativa, 03202, Elche (Alicante), Spain |
In this paper we obtain the existence of global attractors for the dynamicalsystems generated by weak solution of the three-dimensional Navier-Stokesequations with damping. We consider two cases, depending on the values of the parameter β controlling the damping term. First, we prove that for β≥4 weaksolutions are unique and establish the existence of the global attractor forthe corresponding semigroup. Second, for 3≤β<4 we define amultivalued dynamical systems and prove the existence of the global attractoras well. Finally, some numerical simulations are performed.
References:
[1] |
D. Bresch and B. Desjardins,
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[2] |
X. Cai and Q. Jiu,
Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.
doi: 10.1016/j.jmaa.2008.01.041. |
[3] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002. |
[4] |
J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-98037-4. |
[5] |
M. Gobbino and M. Sardella,
On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14.
doi: 10.1006/jdeq.1996.3166. |
[6] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Structure and regularity of the global attractor of a reacction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4155-4182.
doi: 10.3934/dcds.2014.34.4155. |
[7] |
O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractors for general non-autonomous reaction-diffusion systems, in Continuous and Distributed Systems. Theory and Applications, M.Z.Zgurovsky and V.A. Sadovnichiy eds, 211 (2014), 163-180, Cham, Springer.
doi: 10.1007/978-3-319-03146-0_12. |
[8] |
F. Huang and R. Pan,
Convergence rate for compressible Euler equations with damping and vacuum, Arch. Rational Mech. Anal., 166 (2003), 359-376.
doi: 10.1007/s00205-002-0234-5. |
[9] |
Y. Kim and K. Li,
Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differential Equations, 2017 (2017), 1-11.
|
[10] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, New-York, 1991.
doi: 10.1017/CBO9780511569418.![]() ![]() ![]() |
[11] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Gauthier-Villar, Paris, 1969. |
[12] |
A. A. Linninger, M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapali and R. D. Penn,
Cerebrospinal fluid flow in the normal and hydrocefalic human brain, IEEE Trans. Biomed. Eng., 54 (2007), 291-302.
|
[13] |
V. S. Valero and J. Melnik AND,
On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[14] |
J. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[15] |
X. Song and Y. Hou,
Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 239-252.
doi: 10.3934/dcds.2011.31.239. |
[16] |
X. Song and Y. Hou,
Uniform attractors for the three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.
doi: 10.1016/j.jmaa.2014.08.044. |
[17] |
X. Song, F. Liang and J. Wu,
Pullback D-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15PP.
doi: 10.1186/s13661-016-0654-z. |
[18] |
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979. |
[19] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[20] |
J. Valero,
On locally compact attractors of dynamical systems, J. Math. Anal. Appl., 237 (1999), 43-54.
doi: 10.1006/jmaa.1999.6446. |
[21] |
H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, New York, 2007. |
[22] |
W. Wang and G. Zhou, Remarks on the regularity criterion of the Navier-Stokes equations with nonlinear damping, Math. Probl. Eng., 2015 (2015), Art. ID 310934, 5 pp.
doi: 10.1155/2015/310934. |
[23] |
Z. Zhang, X. Wu and M. Lu,
On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.
doi: 10.1016/j.jmaa.2010.11.019. |
[24] |
X. Zhong,
Global well-posedness to the incompressible Navier-Stokes equations with damping, Electron. J. Qual. Theory Differ. Equ., 62 (2017), 1-9.
|
[25] |
Y. Zhou,
Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Letters, 25 (2012), 1822-1825.
doi: 10.1016/j.aml.2012.02.029. |
show all references
References:
[1] |
D. Bresch and B. Desjardins,
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238 (2003), 211-223.
doi: 10.1007/s00220-003-0859-8. |
[2] |
X. Cai and Q. Jiu,
Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799-809.
doi: 10.1016/j.jmaa.2008.01.041. |
[3] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002. |
[4] |
J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-98037-4. |
[5] |
M. Gobbino and M. Sardella,
On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14.
doi: 10.1006/jdeq.1996.3166. |
[6] |
O. V. Kapustyan, P. O. Kasyanov and J. Valero,
Structure and regularity of the global attractor of a reacction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 4155-4182.
doi: 10.3934/dcds.2014.34.4155. |
[7] |
O. V. Kapustyan, P. O. Kasyanov, J. Valero and M. Z. Zgurovsky, Structure of uniform global attractors for general non-autonomous reaction-diffusion systems, in Continuous and Distributed Systems. Theory and Applications, M.Z.Zgurovsky and V.A. Sadovnichiy eds, 211 (2014), 163-180, Cham, Springer.
doi: 10.1007/978-3-319-03146-0_12. |
[8] |
F. Huang and R. Pan,
Convergence rate for compressible Euler equations with damping and vacuum, Arch. Rational Mech. Anal., 166 (2003), 359-376.
doi: 10.1007/s00205-002-0234-5. |
[9] |
Y. Kim and K. Li,
Time-periodic strong solutions of the 3D Navier-Stokes equations with damping, Electron. J. Differential Equations, 2017 (2017), 1-11.
|
[10] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, New-York, 1991.
doi: 10.1017/CBO9780511569418.![]() ![]() ![]() |
[11] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Gauthier-Villar, Paris, 1969. |
[12] |
A. A. Linninger, M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapali and R. D. Penn,
Cerebrospinal fluid flow in the normal and hydrocefalic human brain, IEEE Trans. Biomed. Eng., 54 (2007), 291-302.
|
[13] |
V. S. Valero and J. Melnik AND,
On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[14] |
J. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
[15] |
X. Song and Y. Hou,
Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 239-252.
doi: 10.3934/dcds.2011.31.239. |
[16] |
X. Song and Y. Hou,
Uniform attractors for the three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337-351.
doi: 10.1016/j.jmaa.2014.08.044. |
[17] |
X. Song, F. Liang and J. Wu,
Pullback D-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Bound. Value Probl., 2016 (2016), 15PP.
doi: 10.1186/s13661-016-0654-z. |
[18] |
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979. |
[19] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[20] |
J. Valero,
On locally compact attractors of dynamical systems, J. Math. Anal. Appl., 237 (1999), 43-54.
doi: 10.1006/jmaa.1999.6446. |
[21] |
H. Versteeg and W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, New York, 2007. |
[22] |
W. Wang and G. Zhou, Remarks on the regularity criterion of the Navier-Stokes equations with nonlinear damping, Math. Probl. Eng., 2015 (2015), Art. ID 310934, 5 pp.
doi: 10.1155/2015/310934. |
[23] |
Z. Zhang, X. Wu and M. Lu,
On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 377 (2011), 414-419.
doi: 10.1016/j.jmaa.2010.11.019. |
[24] |
X. Zhong,
Global well-posedness to the incompressible Navier-Stokes equations with damping, Electron. J. Qual. Theory Differ. Equ., 62 (2017), 1-9.
|
[25] |
Y. Zhou,
Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Letters, 25 (2012), 1822-1825.
doi: 10.1016/j.aml.2012.02.029. |





[1] |
Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239 |
[2] |
Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172 |
[3] |
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611 |
[4] |
Tobias Breiten, Karl Kunisch. Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4197-4229. doi: 10.3934/dcds.2020178 |
[5] |
Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 |
[6] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019 |
[7] |
Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245 |
[8] |
Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137 |
[9] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[10] |
Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225 |
[11] |
Ling Liu, Jiashan Zheng, Gui Bao. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3437-3460. doi: 10.3934/dcdsb.2020068 |
[12] |
Yat Tin Chow, Ali Pakzad. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021270 |
[13] |
Juan Vicente Gutiérrez-Santacreu. Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2593-2613. doi: 10.3934/dcds.2020142 |
[14] |
Vu Manh Toi. Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay. Evolution Equations and Control Theory, 2021, 10 (4) : 1007-1023. doi: 10.3934/eect.2020099 |
[15] |
Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655 |
[16] |
Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173 |
[17] |
P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937 |
[18] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[19] |
Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209 |
[20] |
Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]