\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Discontinuous phenomena in bioreactor system

  • * Corresponding author: Hany A. hosham

    * Corresponding author: Hany A. hosham 
Abstract Full Text(HTML) Figure(9) Related Papers Cited by
  • This paper critically examines discontinuous bifurcation and stability issues in model of methane gas production from organic waste via decaying process in two cases, namely sliding and non-sliding flow. The presence of certain types of discontinuities in Monod curve lead to discontinuous system and therefore the criteria for the existence and stability of equilibrium points are established. The analysis highlights the presence of several types of border collision bifurcations depending upon the effect of the dilution factor, biomass concentration and solid-liquid-gas separator efficiency, like nonsmooth fold, persistence and grazing-sliding scenarios. In addition, numerical simulations are carried out to illustrate and validate the results.

    Mathematics Subject Classification: Primary: 34A36, 34C23, 34K18, 34K20, 92B05; Secondary: 34K21, 74H60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Structural frame of Upflow anaerobic sludge blanket(UASB)

    Figure 2.  Equilibrium transition due to the effect of SLG separator deficiency $\alpha_6$, admissible (solid line) and virtual (dashed line): (a) Two equilibrium points of $\ominus$-system (b)Two equilibrium points of $\oplus$-system.

    Figure 3.  Persistence bifurcation of CPWS (8) when $\alpha_6 = 0.1213$

    Figure 4.  Persistence bifurcation of CPWS (8) when: (a) $m = 0$ where $\alpha_1^{max} = 2.639$ and (b) $m = 200$ where $\alpha_1 = 0.7572$

    Figure 5.  Existence of nonsmooth bifurcation of sliding flow (5) at $\lambda = 0, \alpha_6 = 0.04802$

    Figure 6.  Existence of nonsmooth bifurcation of sliding flow (5) at $\lambda = 1, \alpha_6 = 0.04905$

    Figure 7.  Existence of persistence bifurcation of sliding flow (5) at $\lambda = 0, \alpha_6 = 0.0255$

    Figure 8.  Existence of persistence bifurcation of sliding flow (5) at $\lambda = 1, \alpha_6 = 0.02496$

    Figure 9.  Numerical simulation illustrating a grazing-sliding bifurcation occurring at $\alpha_6 = \alpha_6^{graz}$ in DS (5).

  •   A. H. Ajbar , M. ALAhmad  and  E. Ali , On the dynamics of biodegradation of wastewater in aerated continuous bioreactors, Mathl. Comput. Model., 54 (2011) , 1930-1942.  doi: 10.1016/j.mcm.2011.04.035.
      R. T. Alqahtani, Modelling of Biological Wastewater Treatment, Ph.D. Thesis. University of Wollongong, Australia, 2013.
      J. Awrejcewicz and C. Lamarque, Bifurcation and Chaos in Nonsmooth Mechanical Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812564801.
      A. Bornhöft , R. Hanke-Rauschenbach  and  K. Sundmacher , Steady-state analysis of the anaerobic digestion model no. 1 (ADM1), Nonlinear Dyn., 73 (2013) , 535-549.  doi: 10.1007/s11071-013-0807-x.
      B. Benyahia , T. Sari , B. Cherki  and  J. Harmand , Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control, 22 (2012) , 1008-1019. 
      M. di Bernardo, C. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.
      M. Fečkan and M. Pospíšil, Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems, Academic Press is an imprint of Elsevier, London, 2016.
      A. F. Filippov , Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964) , 199-231. 
      Y. Gao , X. Meng  and  Q. Lu , Border collision bifurcations in 3D piecewise smooth chaotic circuit, Appl. Math. Mech.-Engl. Ed., 37 (2016) , 1239-1250.  doi: 10.1007/s10483-016-2129-6.
      H. A. Hosham, Cone-like Invariant Manifolds for Nonsmooth Systems, Ph.D. Thesis. Universität zu Köln, Germany, 2011.
      H. A. Hosham , Bifurcation of periodic orbits in discontinuous systems, Nonlinear Dyn., 87 (2017) , 135-148.  doi: 10.1007/s11071-016-3031-7.
      T. Küpper  and  H. A. Hosham , Reduction to invariant cones for nonsmooth systems, Math. Comput. Simul., 81 (2011) , 980-995.  doi: 10.1016/j.matcom.2010.10.004.
      T. Küpper , H. A. Hosham  and  K. Dudtschenko , The dynamics of bells as impacting system, J. Mech. Eng. Sci., 225 (2011) , 2436-2443. 
      T. Küpper, H. A. Hosham and D. Weiss, Bifurcation for nonsmooth dynamical systems via reduction methods, in: Recent Trends in Dynamical Systems, Proceedings in Mathematics and Statistics, Springer-Verlag, 35 (2013), 79-105. doi: 10.1007/978-3-0348-0451-6_5.
      R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Springer-Verlag, Berlin, Germany, 2004. doi: 10.1007/978-3-540-44398-8.
      Y. Li, L. Yuan and Z. Du, Bifurcation of nonhyperbolic limit cycles in piecewise smooth planar systems with finitely many zones, Int. J. Bifurcation and Chaos, Appl. Sci. Engrg., 27 (2017), 1750162, 14 pp. doi: 10.1142/S0218127417501620.
      L. A. Melo-Varela, S. Casanova-Trujillo and G. Olivar-Tost, Dynamics of a bioreactor with a bacteria piecewise-linear growth model in a methane-producing process, Math. Prob. in Engin, 2013 (2013), Art. ID 685452, 8 pp. doi: 10.1155/2013/685452.
      R. Muñoz, Design and Implementation of a COD Control System of a Prototype UASB Reactor for Treating Leachates, M.S. thesis. National University of Colombia, 2006. University of Colombia, 2006.
      S. Shen , G. C. Premier , A. Guwy  and  R. Dinsdale , Bifurcation and stability analysis of an anaerobic digestion model, Nonlinear Dyn., 48 (2007) , 391-408.  doi: 10.1007/s11071-006-9093-1.
      D. Weiss , T. Küpper  and  H. A. Hosham , Invariant manifolds for nonsmooth systems, Physica D: Nonlinear Phenomena, 241 (2012) , 1895-1902.  doi: 10.1016/j.physd.2011.07.012.
      D. Weiss , T. Küpper  and  H. A. Hosham , Invariant manifolds for nonsmooth systems with sliding mode, Math. Comput. Simul., 110 (2015) , 15-32.  doi: 10.1016/j.matcom.2014.02.004.
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(874) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return