July  2019, 24(7): 3089-3114. doi: 10.3934/dcdsb.2018302

Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls

1. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. 

Departamento de Matemática and CMAF-CIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

* Corresponding author: Teresa Faria

Received  April 2018 Revised  June 2018 Published  July 2019 Early access  October 2018

Fund Project: Professor Yoshiaki Muroya passed away in October 2015, while the research for this paper was being conducted. The second author wishes to dedicate this paper to his memory.

In this paper, we apply a Lyapunov functional approach to Lotka-Volterra systems with infinite delays and feedback controls and establish that the feedback controls have no influence on the attractivity properties of a saturated equilibrium. This improves previous results by the authors and others, where, while feedback controls were used mostly to change the position of a unique saturated equilibrium, additional conditions involving the controls had to be assumed in order to preserve its global attractivity. The situation of partial extinction is further analysed, for which the original system is reduced to a lower dimensional one which maintains its global dynamics features.

Citation: Yoshiaki Muroya, Teresa Faria. Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3089-3114. doi: 10.3934/dcdsb.2018302
References:
[1]

S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Anal., 34 (1998), 191-228.  doi: 10.1016/S0362-546X(97)00602-0.

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system, Nonlinear Anal., 62 (2005), 545-557.  doi: 10.1016/j.na.2005.03.069.

[3]

I. Al-DarabsahX. Tang and Y. Yuan, A prey-predator model with migrations and delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 737-761.  doi: 10.3934/dcdsb.2016.21.737.

[4]

H. Bereketoglu and I. Györi, Global asymptotic stability in a nonautonomous Lotka-Volterra type systems with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291.  doi: 10.1006/jmaa.1997.5403.

[5]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

[6]

F. ChenZ. Li and Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal. RWA, 8 (2007), 680-687.  doi: 10.1016/j.nonrwa.2006.02.006.

[7]

F. ChenX. Xie and H. Wang, Global stability in a competition model of plankton allelopathy with infinite delay, J. Syst. Sci. Complex., 28 (2015), 1070-1079.  doi: 10.1007/s11424-015-3125-1.

[8]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay, J. Dynam. Differential Equations, 22 (2010), 299-324.  doi: 10.1007/s10884-010-9166-1.

[9]

T. Faria, Global dynamics for Lotka-Volterra systems with infinite delay and patch structure, Appl. Math. Comput., 245 (2014), 575-590.  doi: 10.1016/j.amc.2014.08.009.

[10]

T. Faria, Persistence and permanence for a class of functional differential equations with infinite delay, J. Dynam. Differential Equations, 28 (2016), 1163-1186.  doi: 10.1007/s10884-015-9462-x.

[11]

T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 301-330.  doi: 10.1017/S0308210513001194.

[12]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publ., Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.

[13]

K. Gopalsamy and P. Weng, Global attractivity in a competition system with feedback controls, Comput. Math. Appl., 45 (2003), 665-676.  doi: 10.1016/S0898-1221(03)00026-9.

[14]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. 

[15]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New-York, 1993. doi: 10.1007/978-1-4612-4342-7.

[16]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.

[17]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Mathematical Society, Cambridge University Press, Cambridge, 1988.

[18]

Z. Hou, Permanence and extinction in competitive Lotka-Volterra systems with delays, Nonlinear Anal. RWA, 12 (2011), 2130-2141.  doi: 10.1016/j.nonrwa.2010.12.027.

[19]

H. HuZ. Teng and S. Gao, Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Anal. RWA, 10 (2009), 2508-2520.  doi: 10.1016/j.nonrwa.2008.05.011.

[20]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks, J. Differential Equations, 119 (1995), 503-532.  doi: 10.1006/jdeq.1995.1100.

[21]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations, 103 (1993), 221-246.  doi: 10.1006/jdeq.1993.1048.

[22]

Z. LiM. Han and F. Chen, Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays, Nonlinear Anal. RWA, 14 (2013), 402-413.  doi: 10.1016/j.nonrwa.2012.07.004.

[23]

F. Montes de Oca and L. Pérez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay, Nonlinear Anal., 75 (2012), 758-768.  doi: 10.1016/j.na.2011.09.009.

[24]

F. Montes de Oca and L. Pérez, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2663-2690.  doi: 10.3934/dcdsb.2015.20.2663.

[25]

F. Montes de Oca and M. Vivas, Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal. RWA, 7 (2006), 1042-1047.  doi: 10.1016/j.nonrwa.2005.09.005.

[26]

Y. Muroya, Partial survival and extinction of species in nonutonomous Lotka-Volterra systems with delays, Dynam. Systems Appl., 12 (2003), 295-306. 

[27]

Y. Muroya, Global stability of a delayed nonlinear Lotka-Volterra system with feedback controls and patch structure, Appl. Math. Comput., 239 (2014), 60-73.  doi: 10.1016/j.amc.2014.04.036.

[28]

Y. Muroya, A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model), Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 999-1008.  doi: 10.3934/dcdss.2015.8.999.

[29]

Y. MuroyaT. Kuniya and J. Wang, Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure, J. Math. Anal. Appl., 425 (2015), 415-439.  doi: 10.1016/j.jmaa.2014.12.019.

[30]

L. NieJ. Peng and Z. Teng, Permanence and stability in multi-species non-autonomous Lotka-Volterra competitive systems with delays and feedback controls, Math. Comput. Modelling, 49 (2009), 295-306.  doi: 10.1016/j.mcm.2008.05.004.

[31]

C. ShiZ. Li and F. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Nonlinear Anal. RWA, 13 (2012), 2214-2226.  doi: 10.1016/j.nonrwa.2012.01.016.

[32]

T. Su and X. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3655-3667.  doi: 10.3934/dcdsb.2016115.

[33]

X.H. Tang and X. Zou, Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback, J. Differential Equations, 192 (2003), 502-535.  doi: 10.1016/S0022-0396(03)00042-1.

[34]

Z. Teng and L. Chen, Global stability of periodic Lotka-Volterra systems with delays, Nonlinear Anal., 45 (2001), 1081-1095.  doi: 10.1016/S0362-546X(99)00441-1.

[35]

Z. Teng and M. Rehim, Persistence in nonautonomous predator-prey systems with infinite delay, J. Comput. Appl. Math., 197 (2006), 302-321.  doi: 10.1016/j.cam.2005.11.006.

[36]

R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.  doi: 10.1007/BF00288430.

[37]

K. WangZ. Teng and H. Jiang, On the permanence for n-species non-autonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Int. J. Biomath., 1 (2008), 29-43.  doi: 10.1142/S1793524508000060.

[38]

Z. Zhang, Existence and global attractivity of a positive periodic solution for a generalized delayed population model with stocking and feedback control, Math. Comput. Modelling, 48 (2008), 749-760.  doi: 10.1016/j.mcm.2007.10.015.

show all references

References:
[1]

S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Anal., 34 (1998), 191-228.  doi: 10.1016/S0362-546X(97)00602-0.

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system, Nonlinear Anal., 62 (2005), 545-557.  doi: 10.1016/j.na.2005.03.069.

[3]

I. Al-DarabsahX. Tang and Y. Yuan, A prey-predator model with migrations and delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 737-761.  doi: 10.3934/dcdsb.2016.21.737.

[4]

H. Bereketoglu and I. Györi, Global asymptotic stability in a nonautonomous Lotka-Volterra type systems with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291.  doi: 10.1006/jmaa.1997.5403.

[5]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

[6]

F. ChenZ. Li and Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal. RWA, 8 (2007), 680-687.  doi: 10.1016/j.nonrwa.2006.02.006.

[7]

F. ChenX. Xie and H. Wang, Global stability in a competition model of plankton allelopathy with infinite delay, J. Syst. Sci. Complex., 28 (2015), 1070-1079.  doi: 10.1007/s11424-015-3125-1.

[8]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay, J. Dynam. Differential Equations, 22 (2010), 299-324.  doi: 10.1007/s10884-010-9166-1.

[9]

T. Faria, Global dynamics for Lotka-Volterra systems with infinite delay and patch structure, Appl. Math. Comput., 245 (2014), 575-590.  doi: 10.1016/j.amc.2014.08.009.

[10]

T. Faria, Persistence and permanence for a class of functional differential equations with infinite delay, J. Dynam. Differential Equations, 28 (2016), 1163-1186.  doi: 10.1007/s10884-015-9462-x.

[11]

T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 301-330.  doi: 10.1017/S0308210513001194.

[12]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publ., Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.

[13]

K. Gopalsamy and P. Weng, Global attractivity in a competition system with feedback controls, Comput. Math. Appl., 45 (2003), 665-676.  doi: 10.1016/S0898-1221(03)00026-9.

[14]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. 

[15]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New-York, 1993. doi: 10.1007/978-1-4612-4342-7.

[16]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.

[17]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Mathematical Society, Cambridge University Press, Cambridge, 1988.

[18]

Z. Hou, Permanence and extinction in competitive Lotka-Volterra systems with delays, Nonlinear Anal. RWA, 12 (2011), 2130-2141.  doi: 10.1016/j.nonrwa.2010.12.027.

[19]

H. HuZ. Teng and S. Gao, Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Anal. RWA, 10 (2009), 2508-2520.  doi: 10.1016/j.nonrwa.2008.05.011.

[20]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks, J. Differential Equations, 119 (1995), 503-532.  doi: 10.1006/jdeq.1995.1100.

[21]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations, 103 (1993), 221-246.  doi: 10.1006/jdeq.1993.1048.

[22]

Z. LiM. Han and F. Chen, Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays, Nonlinear Anal. RWA, 14 (2013), 402-413.  doi: 10.1016/j.nonrwa.2012.07.004.

[23]

F. Montes de Oca and L. Pérez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay, Nonlinear Anal., 75 (2012), 758-768.  doi: 10.1016/j.na.2011.09.009.

[24]

F. Montes de Oca and L. Pérez, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2663-2690.  doi: 10.3934/dcdsb.2015.20.2663.

[25]

F. Montes de Oca and M. Vivas, Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal. RWA, 7 (2006), 1042-1047.  doi: 10.1016/j.nonrwa.2005.09.005.

[26]

Y. Muroya, Partial survival and extinction of species in nonutonomous Lotka-Volterra systems with delays, Dynam. Systems Appl., 12 (2003), 295-306. 

[27]

Y. Muroya, Global stability of a delayed nonlinear Lotka-Volterra system with feedback controls and patch structure, Appl. Math. Comput., 239 (2014), 60-73.  doi: 10.1016/j.amc.2014.04.036.

[28]

Y. Muroya, A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model), Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 999-1008.  doi: 10.3934/dcdss.2015.8.999.

[29]

Y. MuroyaT. Kuniya and J. Wang, Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure, J. Math. Anal. Appl., 425 (2015), 415-439.  doi: 10.1016/j.jmaa.2014.12.019.

[30]

L. NieJ. Peng and Z. Teng, Permanence and stability in multi-species non-autonomous Lotka-Volterra competitive systems with delays and feedback controls, Math. Comput. Modelling, 49 (2009), 295-306.  doi: 10.1016/j.mcm.2008.05.004.

[31]

C. ShiZ. Li and F. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Nonlinear Anal. RWA, 13 (2012), 2214-2226.  doi: 10.1016/j.nonrwa.2012.01.016.

[32]

T. Su and X. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3655-3667.  doi: 10.3934/dcdsb.2016115.

[33]

X.H. Tang and X. Zou, Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback, J. Differential Equations, 192 (2003), 502-535.  doi: 10.1016/S0022-0396(03)00042-1.

[34]

Z. Teng and L. Chen, Global stability of periodic Lotka-Volterra systems with delays, Nonlinear Anal., 45 (2001), 1081-1095.  doi: 10.1016/S0362-546X(99)00441-1.

[35]

Z. Teng and M. Rehim, Persistence in nonautonomous predator-prey systems with infinite delay, J. Comput. Appl. Math., 197 (2006), 302-321.  doi: 10.1016/j.cam.2005.11.006.

[36]

R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.  doi: 10.1007/BF00288430.

[37]

K. WangZ. Teng and H. Jiang, On the permanence for n-species non-autonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Int. J. Biomath., 1 (2008), 29-43.  doi: 10.1142/S1793524508000060.

[38]

Z. Zhang, Existence and global attractivity of a positive periodic solution for a generalized delayed population model with stocking and feedback control, Math. Comput. Modelling, 48 (2008), 749-760.  doi: 10.1016/j.mcm.2007.10.015.

[1]

Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663

[2]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[3]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[4]

Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142

[5]

Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290

[6]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[7]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5141-5164. doi: 10.3934/dcds.2021071

[8]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[9]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[10]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[11]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[12]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[13]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[14]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[15]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[16]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[17]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[18]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[19]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[20]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (284)
  • HTML views (543)
  • Cited by (1)

Other articles
by authors

[Back to Top]