Advanced Search
Article Contents
Article Contents

Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates

  • * Corresponding author: Ruikuan Liu

    * Corresponding author: Ruikuan Liu
The work was supported by the Young Scholars Development Fund of SWPU (Grant No. 201899010079), and by the Natural Science Foundation of China (11771306).
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • The main aim of this paper is to study the bifurcation solutions associated with the spinor Bose-Einstein condensates. Based on the Principle of Hamilton Dynamics and the Principle of Lagrangian Dynamics, a general pattern formation equation for the spinor Bose-Einstein condensates is established. Moreover, three kinds of critical conditions for eigenvalues are obtained under spectrum analysis and the different external confining potentials. With the change of different external potentials, the different topological structures of bifurcation solutions for the spinor Bose-Einstein condensates system are derived from steady state bifurcation theory.

    Mathematics Subject Classification: Primary: 35Q55, 35J40, 35J57; Secondary: 35Q40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The graph of the part of S2

    Figure 2.  The graph of S1

  • [1] M. H. AndersonJ. R. EnsherM. R. MatthewsC. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201. 
    [2] W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates, Methods Appl. Anal., 17 (2010), 49-80.  doi: 10.4310/MAA.2010.v17.n1.a2.
    [3] D. BitkoT. F. Rosenbaum and G. Aeppli, Quantum Critical Behavior for a Model Magnet, Phys. Rev. Lett., 77 (1996), 940. 
    [4] I. Bloch, M. Greiner, O. Mandel, T. W. Hänsch and T. Esslinger, Sympathetic cooling of 85 Rb, and 87 Rb, Phys. Rev. A, 64 (2001), p2.
    [5] P. Chandra, G. G. Lonzarich, S. E. Rowley and J. F. Scott, Prospects and applications near ferroelectric quantum phase transitions: A key issues review, Rep. Progr. Phys., 80 (2017), 112502, 24pp. doi: 10.1088/1361-6633/aa82d2.
    [6] L. W. ClarkL. Feng and C. Chin, Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science, 354 (2016), 606-610.  doi: 10.1126/science.aaf9657.
    [7] R. Coldea, D. A. Tennant, E. M. Wheeler et al., Quantum criticality in an ising chain: Experimental evidence for emergent e8 symmetry, Science, 327 (2010), 177-180.
    [8] F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev.Mod. Phys., 71 (1998), 463-512. 
    [9] K. B. DavisM. O. MewesM. R. AndrewsN. J. van DrutenD. S. DurfeeD. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 39-69. 
    [10] F. J. DysonE. H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., 18 (1978), 335-383.  doi: 10.1007/BF01106729.
    [11] A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), 647. 
    [12] C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A. 471 (2015), 20140353, 24 pp. doi: 10.1098/rspa.2014.0353.
    [13] M. Greiner, I. Bloch and T. W. Hänsch, et. al., Magnetic transport of trapped cold atoms over a large distance, Physical Review A, 63 (2001), 031401.
    [14] T.-L. Ho, Spinor bose condensates in optical traps, Physical review letters, 81 (1998), 742-745. 
    [15] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 6 (1973), 1181. 
    [16] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Amsterdam, 2003.
    [17] R. Liu, T. Ma, S. Wang and J. Yang, hermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B., 2018, to appear.
    [18] H. LiuT. SengulS. Wang and P. Zhang, Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.  doi: 10.4310/CMS.2015.v13.n5.a10.
    [19] E. K. Luckins and R. A. Van Gorder, Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains, Ann. Physics, 388 (2018), 206-234.  doi: 10.1016/j.aop.2017.11.009.
    [20] X. LuoY. ZouL. WuQ. LiuM. HanM. Tey and L. You, Deterministic entanglement generation from driving through quantum phase transitions, Science, 355 (2017), 620-623.  doi: 10.1126/science.aag1106.
    [21] T. Ma, D. Li, R. Liu and J. Yang, Mathematical Theory for Quantum Phase Transitions, 2016, see arXiv: 1610.06988
    [22] T. Ma, R. Liu and J. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese), Science Press, Beijing, 2018.
    [23] T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd. : Hackensack, NJ, 2005. doi: 10.1142/5827.
    [24] T. Ma and S. Wang, Dynamic transition theory for thermohaline circulation, Phys. D, 239 (2010), 167-189.  doi: 10.1016/j.physd.2009.10.014.
    [25] T. Ma and S. Wang, Dynamic transition and pattern formation in Taylor problem, Chin. Ann. Math. Ser. B, 31 (2010), 953-974.  doi: 10.1007/s11401-010-0610-7.
    [26] T. Ma and S. Wang, Phase transitions for Belousov-Zhabotinsky reactions, Math. Methods Appl. Sci., 34 (2011), 1381-1397.  doi: 10.1002/mma.1446.
    [27] T. Ma and S. Wang, Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.  doi: 10.3934/dcdsb.2014.19.2809.
    [28] T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-8963-4.
    [29] T. Ma and S. Wang, Mathematical Principles of Theoretical Physics, Science Press, Beijing, 2015.
    [30] T. Ma and S. Wang, Topological Phase Transitions Ⅰ: Quantum Phase Transitions, to appear, (2018) or (Tian Ma, Shouhong Wang. Topological Phase Transitions Ⅰ: Quantum Phase Transitions, 2017. < hal-01651908 > ).
    [31] T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, Journal of the Physical Society of Japan, 67 (1998), 1822-1825. 
    [32] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. 
    [33] J. Rogel-Salazar, The Gross-Pitaevskii equation and Bose-Einstein condensates, Eur. J. Phys., 34 (2013), 247-257. 
    [34] R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509.  doi: 10.1007/s00220-002-0695-2.
    [35] R. Seiringer, Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation, J. Math. Phys., 55 (2014), 075209, 18pp. doi: 10.1063/1.4881536.
    [36] T. SengulJ. Shen and S. Wang, Pattern formations of 2D Rayleigh-Bénard convection with no-slip boundary conditions for the velocity at the critical length scales, Math. Methods Appl. Sci., 38 (2015), 3792-3806.  doi: 10.1002/mma.3317.
    [37] T. Sengul and S. Wang, Pattern formation in Rayleigh-Bénard convection, Commun. Math. Sci., 11 (2013), 315-343.  doi: 10.4310/CMS.2013.v11.n1.a10.
    [38] A. Sütő, Equivalence of Bose-Einstein condensation and symmetry breaking, Phys. Rev. Lett., 94 (2005), 080402.
    [39] M. Vojta, Quantum phase transition, Rep. Prog. Phys., 66 (2003), 2069-2110.  doi: 10.1088/0034-4885/66/12/R01.
  • 加载中



Article Metrics

HTML views(793) PDF downloads(301) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint