American Institute of Mathematical Sciences

August  2019, 24(8): 3615-3631. doi: 10.3934/dcdsb.2018307

Smoothness of density for stochastic differential equations with Markovian switching

 1 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1 2 Department of Mathematics, University of Kansas, Lawrence, Kansas, 66045, USA 3 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

* Corresponding author

Received  December 2017 Revised  May 2018 Published  August 2019 Early access  November 2018

Fund Project: Y. Hu is partially supported by a grant from the Simons Foundation #209206. D. Nualart is supported by the NSF grant DMS1512891. X. Sun and Y. Xie are supported by Natural Science Foundation of China (11601196, 11771187), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (16KJB110006) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

This paper is concerned with a class of stochastic differential equations with Markovian switching. The Malliavin calculus is used to study the smoothness of the density of the solution under a Hörmander type condition. Furthermore, we obtain a Bismut type formula which is used to establish the strong Feller property.

Citation: Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307
References:
 [1] G. Basak, A. Bisi and M. Ghosh, Stability of a Random Diffusion with Linear Drift, J. Math. Anal. Appl., 202 (1996), 604-622.  doi: 10.1006/jmaa.1996.0336.  Google Scholar [2] B. Forster, E. Lütkebohmert and J. Teichmann, Absolutely continuous laws of jump-diffusions in finite and infinite dimensions with appliationc to mathematical finance, SIAM J. Math. Anal., 40 (2009), 2132-2153.  doi: 10.1137/070708822.  Google Scholar [3] P. Malliavin, Stochastic Analysis, Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-15074-6.  Google Scholar [4] X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79 (1999), 45-67.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar [5] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006.  Google Scholar [6] G. Yin and C. Zhu,, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar [7] C. Yuan and X. Mao, Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 103 (2003), 277-291.  doi: 10.1016/S0304-4149(02)00230-2.  Google Scholar

show all references

References:
 [1] G. Basak, A. Bisi and M. Ghosh, Stability of a Random Diffusion with Linear Drift, J. Math. Anal. Appl., 202 (1996), 604-622.  doi: 10.1006/jmaa.1996.0336.  Google Scholar [2] B. Forster, E. Lütkebohmert and J. Teichmann, Absolutely continuous laws of jump-diffusions in finite and infinite dimensions with appliationc to mathematical finance, SIAM J. Math. Anal., 40 (2009), 2132-2153.  doi: 10.1137/070708822.  Google Scholar [3] P. Malliavin, Stochastic Analysis, Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-15074-6.  Google Scholar [4] X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79 (1999), 45-67.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar [5] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006.  Google Scholar [6] G. Yin and C. Zhu,, Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar [7] C. Yuan and X. Mao, Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 103 (2003), 277-291.  doi: 10.1016/S0304-4149(02)00230-2.  Google Scholar
 [1] Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051 [2] Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095 [3] Caroline Hillairet, Ying Jiao, Anthony Réveillac. Pricing formulae for derivatives in insurance using Malliavin calculus. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 7-. doi: 10.1186/s41546-018-0028-9 [4] Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280 [5] Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 [6] Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 [7] Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032 [8] Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107 [9] Leunglung Chan, Song-Ping Zhu. An exact and explicit formula for pricing lookback options with regime switching. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021203 [10] Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359 [11] Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249 [12] Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 [13] Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021024 [14] Weijun Zhan, Qian Guo, Yuhao Cong. The truncated Milstein method for super-linear stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021201 [15] Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697 [16] Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 [17] Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481 [18] Agnieszka Bartłomiejczyk, Henryk Leszczyński. Structured populations with diffusion and Feller conditions. Mathematical Biosciences & Engineering, 2016, 13 (2) : 261-279. doi: 10.3934/mbe.2015002 [19] Artur Avila, Sébastien Gouëzel, Masato Tsujii. Smoothness of solenoidal attractors. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 21-35. doi: 10.3934/dcds.2006.15.21 [20] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2020 Impact Factor: 1.327