-
Previous Article
On the Cahn-Hilliard/Allen-Cahn equations with singular potentials
- DCDS-B Home
- This Issue
-
Next Article
Modeling and analysis of random and stochastic input flows in the chemostat model
Smoothness of density for stochastic differential equations with Markovian switching
1. | Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1 |
2. | Department of Mathematics, University of Kansas, Lawrence, Kansas, 66045, USA |
3. | School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China |
This paper is concerned with a class of stochastic differential equations with Markovian switching. The Malliavin calculus is used to study the smoothness of the density of the solution under a Hörmander type condition. Furthermore, we obtain a Bismut type formula which is used to establish the strong Feller property.
References:
[1] |
G. Basak, A. Bisi and M. Ghosh,
Stability of a Random Diffusion with Linear Drift, J. Math. Anal. Appl., 202 (1996), 604-622.
doi: 10.1006/jmaa.1996.0336. |
[2] |
B. Forster, E. Lütkebohmert and J. Teichmann,
Absolutely continuous laws of jump-diffusions in finite and infinite dimensions with appliationc to mathematical finance, SIAM J. Math. Anal., 40 (2009), 2132-2153.
doi: 10.1137/070708822. |
[3] |
P. Malliavin, Stochastic Analysis, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-3-642-15074-6. |
[4] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[5] |
D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006. |
[6] |
G. Yin and C. Zhu,,
Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010.
doi: 10.1007/978-1-4419-1105-6. |
[7] |
C. Yuan and X. Mao,
Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 103 (2003), 277-291.
doi: 10.1016/S0304-4149(02)00230-2. |
show all references
References:
[1] |
G. Basak, A. Bisi and M. Ghosh,
Stability of a Random Diffusion with Linear Drift, J. Math. Anal. Appl., 202 (1996), 604-622.
doi: 10.1006/jmaa.1996.0336. |
[2] |
B. Forster, E. Lütkebohmert and J. Teichmann,
Absolutely continuous laws of jump-diffusions in finite and infinite dimensions with appliationc to mathematical finance, SIAM J. Math. Anal., 40 (2009), 2132-2153.
doi: 10.1137/070708822. |
[3] |
P. Malliavin, Stochastic Analysis, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-3-642-15074-6. |
[4] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[5] |
D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006. |
[6] |
G. Yin and C. Zhu,,
Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010.
doi: 10.1007/978-1-4419-1105-6. |
[7] |
C. Yuan and X. Mao,
Asymptotic stability in distribution of stochastic differential equations with Markovian switching, Stochastic Process. Appl., 103 (2003), 277-291.
doi: 10.1016/S0304-4149(02)00230-2. |
[1] |
Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051 |
[2] |
Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095 |
[3] |
Caroline Hillairet, Ying Jiao, Anthony Réveillac. Pricing formulae for derivatives in insurance using Malliavin calculus. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 7-. doi: 10.1186/s41546-018-0028-9 |
[4] |
Xing Huang, Yulin Song, Feng-Yu Wang. Bismut formula for intrinsic/Lions derivatives of distribution dependent SDEs with singular coefficients. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022065 |
[5] |
Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 |
[6] |
Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280 |
[7] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 |
[8] |
Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032 |
[9] |
A. Settati, A. Lahrouz, Mohamed El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani. A Markovian switching diffusion for an SIS model incorporating Lévy processes. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022072 |
[10] |
Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure and Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107 |
[11] |
Leunglung Chan, Song-Ping Zhu. An exact and explicit formula for pricing lookback options with regime switching. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021203 |
[12] |
Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024 |
[13] |
Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control and Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359 |
[14] |
Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249 |
[15] |
Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 |
[16] |
Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021024 |
[17] |
Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021301 |
[18] |
Weijun Zhan, Qian Guo, Yuhao Cong. The truncated Milstein method for super-linear stochastic differential equations with Markovian switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3663-3682. doi: 10.3934/dcdsb.2021201 |
[19] |
Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control and Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697 |
[20] |
Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]