In this paper we study a stationary problem arising from population dynamics with a local and nonlocal variable diffusion coefficient. We show the existence of an unbounded continuum of positive solutions that bifurcates from the trivial solution. The global structure of this continuum depends on the value of the nonlocal diffusion at infinity and the relative position of the refuge of the species and of the sets where it diffuses locally and not locally, respectively.
Citation: |
C. O. Alves
, F. J. S. A. Corrêa
and M. Chipot
, On a class of intermediate local-nonlocal elliptic problems, Topol. Methods Nonlinear Anal., 49 (2017)
, 497-509.
![]() ![]() |
|
A. Ambrosetti
and J. L. Gámez
, Branches of positive solutions for some semilinear Schrödinger equations, Math. Z.,, 224 (1997)
, 347-362.
doi: 10.1007/PL00004586.![]() ![]() ![]() |
|
D. Arcoya
, T. Leonori
and A. Primo
, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano Theorem, Acta Appl. Math.,, 127 (2013)
, 87-104.
doi: 10.1007/s10440-012-9792-1.![]() ![]() ![]() |
|
H. Brezis
and L. Oswald
, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986)
, 55-64.
doi: 10.1016/0362-546X(86)90011-8.![]() ![]() ![]() |
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296.![]() ![]() ![]() |
|
T. Caraballo
, M. Herrera-Cobos
and P. Marín-Rubio
, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015)
, 3-18.
doi: 10.1016/j.na.2014.07.011.![]() ![]() ![]() |
|
M. Chipot
and F. J. S. A. Corrêa
, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc., New Series, 40 (2009)
, 1-13.
doi: 10.1007/s00574-009-0017-9.![]() ![]() ![]() |
|
M. Chipot
and P. Roy
, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014)
, 289-300.
![]() ![]() |
|
T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, A non-local non-autonomous diffusion problem: linear and sublinear cases, Z. Angew. Math. Phys., 68 (2017), Art. 108, 20 pp.
doi: 10.1007/s00033-017-0856-y.![]() ![]() ![]() |
|
T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, The influence of a metasolution on the behaviour of the logistic equation with nonlocal diffusion coefficient, Calc. Var. Partial Differential Equations, 57 (2018), Art. 100, 26 pp.
doi: 10.1007/s00526-018-1385-z.![]() ![]() ![]() |
|
J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8664.![]() ![]() ![]() |
|
J. López-Gómez,
Metasolutions of Parabolic Equations in Population Dynamics, Taylor and Francis Group, 2016.
![]() ![]() |
|
A. Molino and J. D. Rossi, A concave-convex problem with a variable operator, Calc. Var. Partial Differential Equations, 57 (2018), Art. 10, 26 pp.
doi: 10.1007/s00526-017-1291-9.![]() ![]() ![]() |
|
T. Ouyang
, On the positive solutions of semilinear equations $\Delta u + {\rm{ }}\lambda u - h{u^p} = 0$ on the compact manifolds, Transactions of the American Mathematical Society, 331 (1992)
, 503-527.
doi: 10.2307/2154124.![]() ![]() ![]() |
|
P. H. Rabinowitz
, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971)
, 487-513.
doi: 10.1016/0022-1236(71)90030-9.![]() ![]() ![]() |
|
P. Roy
, Existence results for some nonlocal problems, Differ. Equ. Appl., 6 (2014)
, 361-381.
doi: 10.7153/dea-06-20.![]() ![]() ![]() |
|
B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problem, Bound. Value. Probl., 2016, Paper No. 165, 35 pp.
doi: 10.1186/s13661-016-0670-z.![]() ![]() ![]() |
|
B. Yan
and D. Wang
, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016)
, 72-102.
doi: 10.1016/j.jmaa.2016.04.023.![]() ![]() ![]() |
Bifurcation diagrams when
Bifurcation diagrams when