August  2019, 24(8): 3755-3764. doi: 10.3934/dcdsb.2018314

A new proof of the competitive exclusion principle in the chemostat

1. 

MISTEA, Univ. Montpellier, Inra, Montpellier SupAgro, 2, place Pierre Viala, 34060 Montpellier, France

2. 

IMAG, Univ. Montpellier, CNRS, Place Eugène Bataillon, 34090 Montpellier, France

* Corresponding author

Received  April 2018 Revised  June 2018 Published  August 2019 Early access  October 2018

We give an new proof of the well-known competitive exclusion principle in the chemostat model with $N$ species competing for a single resource, for any set of increasing growth functions. The proof is constructed by induction on the number of the species, after being ordered. It uses elementary analysis and comparisons of solutions of ordinary differential equations.

Citation: Alain Rapaport, Mario Veruete. A new proof of the competitive exclusion principle in the chemostat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3755-3764. doi: 10.3934/dcdsb.2018314
References:
[1]

A. Ajbar and K. Alhumaizi, Dynamics of the Chemostat: A Bifurcation Theory Approach, CRC Press, Boca Raton, FL, 2012.

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion, American Naturalist, 115 (1980), 151-170.  doi: 10.1086/283553.

[3]

G. J. Butler and G. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.  doi: 10.1137/0145006.

[4]

P. de LeenheerB. Li and H. L. Smith, Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248. 

[5]

G. F. Gause, Experimental studies on the struggle for existence, Journal of Experimental Biology, 9 (1932), 389-402. 

[6]

G. F. Gause, The Struggle for Existence, Dover, 1934. translated from Russian in 1971.

[7]

G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297. 

[8]

J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE-Wiley, 2017.

[9]

S. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.  doi: 10.1137/0134064.

[10]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of microorganisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.

[11]

B. Li, Global asymptotic behavior of the chemostat: General response functions and differential removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.  doi: 10.1137/S003613999631100X.

[12]

W. Murdoch, C. Briggs and R. Nisbet, Consumer-Resource Dynamics, Princeton University Press, 2003.

[13]

A. RapaportD. Dochain and J. Harmand, Long run coexistence in the chemostat with multiple species, J. Theoretical Biology, 257 (2009), 252-259.  doi: 10.1016/j.jtbi.2008.11.015.

[14]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates, Mathematical Biosciences & Engineering, 5 (2008), 539-547.  doi: 10.3934/mbe.2008.5.539.

[15]

T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.  doi: 10.1007/s10440-012-9761-8.

[16]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Math. Biosci. Eng., 8 (2011), 827-840.  doi: 10.3934/mbe.2011.8.827.

[17]

H. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[18]

G. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.  doi: 10.1137/0152012.

show all references

References:
[1]

A. Ajbar and K. Alhumaizi, Dynamics of the Chemostat: A Bifurcation Theory Approach, CRC Press, Boca Raton, FL, 2012.

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion, American Naturalist, 115 (1980), 151-170.  doi: 10.1086/283553.

[3]

G. J. Butler and G. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.  doi: 10.1137/0145006.

[4]

P. de LeenheerB. Li and H. L. Smith, Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248. 

[5]

G. F. Gause, Experimental studies on the struggle for existence, Journal of Experimental Biology, 9 (1932), 389-402. 

[6]

G. F. Gause, The Struggle for Existence, Dover, 1934. translated from Russian in 1971.

[7]

G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297. 

[8]

J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE-Wiley, 2017.

[9]

S. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.  doi: 10.1137/0134064.

[10]

S. HsuS. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of microorganisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.

[11]

B. Li, Global asymptotic behavior of the chemostat: General response functions and differential removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.  doi: 10.1137/S003613999631100X.

[12]

W. Murdoch, C. Briggs and R. Nisbet, Consumer-Resource Dynamics, Princeton University Press, 2003.

[13]

A. RapaportD. Dochain and J. Harmand, Long run coexistence in the chemostat with multiple species, J. Theoretical Biology, 257 (2009), 252-259.  doi: 10.1016/j.jtbi.2008.11.015.

[14]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotonic response and different removal rates, Mathematical Biosciences & Engineering, 5 (2008), 539-547.  doi: 10.3934/mbe.2008.5.539.

[15]

T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.  doi: 10.1007/s10440-012-9761-8.

[16]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Math. Biosci. Eng., 8 (2011), 827-840.  doi: 10.3934/mbe.2011.8.827.

[17]

H. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[18]

G. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.  doi: 10.1137/0152012.

Figure 1.  Growth functions and their break-even concentrations
Figure 2.  Illustration of the intervals $I_{i} = [s_1^-, s_i^+]$ for $i\in\{1, \cdots, N-1\}$ (in green, the values of the break-even concentrations $\lambda_{i}$, in orange, the nested intervals $I_{i}$)
[1]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[2]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[3]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[4]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[5]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[6]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[7]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[8]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[9]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[10]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1783-1795. doi: 10.3934/dcdsb.2020361

[11]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[12]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

[13]

Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032

[14]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[15]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[16]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[17]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[18]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[19]

Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 111-123. doi: 10.3934/mbe.2006.3.111

[20]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (278)
  • HTML views (619)
  • Cited by (1)

Other articles
by authors

[Back to Top]