• Previous Article
    Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients
  • DCDS-B Home
  • This Issue
  • Next Article
    Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $
July  2019, 24(7): 3281-3298. doi: 10.3934/dcdsb.2018320

On a beam model related to flight structures with nonlocal energy damping

1. 

Department of Mathematics, State University of Londrina, 86057-970, Londrina, PR, Brazil

2. 

Nucleus of Exact and Technological Sciences, State University of Mato Grosso do Sul, 79804-970, Dourados, MS, Brazil

3. 

Center of Exact and Technological Sciences, State University of Paraná West, 85819-110, Cascavel, PR, Brazil

* Corresponding author. M. A. Jorge Silva has been supported by CNPq, grant 441414/2014-1

V. Narciso has been supported by FUNDECT, grant 219/2016

Received  November 2017 Revised  August 2018 Published  July 2019 Early access  January 2019

This paper deals with new results on existence, uniqueness and stability for a class of nonlinear beams arising in connection with nonlocal dissipative models for flight structures with energy damping first proposed by Balakrishnan-Taylor [2]. More precisely, the following
$ n $
-dimensional model is addressed
$ u_{tt}-\kappa \Delta u+\Delta ^2u-\gamma\left[\int_{\Omega}\left(|\Delta u|^2+|u_t|^2\right)dx \right]^q\Delta u_t+f(u) = 0 \ in \ \Omega \times \mathbb{R}^+, $
where
$ \Omega\subset \mathbb{R}^n $
is a bounded domain with smooth boundary, the coefficient of extensibility
$ \kappa $
is nonnegative, the damping coefficient
$ \gamma $
is positive and
$ q\ge 1 $
. The nonlinear source
$ f(u) $
can be seen as an external forcing term of lower order. Our main results feature global existence and uniqueness, polynomial stability and a non-exponential decay prospect.
Citation: Marcio A. Jorge Silva, Vando Narciso, André Vicente. On a beam model related to flight structures with nonlocal energy damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3281-3298. doi: 10.3934/dcdsb.2018320
References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12.

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14.

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78.  doi: 10.1080/00036819408840290.

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912.

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157.  doi: 10.1016/S0168-9274(03)00066-7.

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21. 

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975.

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517.  doi: 10.1016/j.jde.2009.02.020.

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994.

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948. 

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092. 

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478.  doi: 10.1002/mma.577.

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.  doi: 10.1016/j.jmaa.2012.07.004.

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265.  doi: 10.2206/kyushumfs.30.257.

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36. 

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38.

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.

show all references

References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12.

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14.

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78.  doi: 10.1080/00036819408840290.

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912.

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157.  doi: 10.1016/S0168-9274(03)00066-7.

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21. 

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975.

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517.  doi: 10.1016/j.jde.2009.02.020.

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994.

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948. 

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092. 

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478.  doi: 10.1002/mma.577.

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.  doi: 10.1016/j.jmaa.2012.07.004.

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265.  doi: 10.2206/kyushumfs.30.257.

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36. 

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38.

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.

[1]

Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 985-1008. doi: 10.3934/dcds.2015.35.985

[2]

Eduardo Henrique Gomes Tavares, Vando Narciso. Attractors for a class of extensible beams with strong nonlinear damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022013

[3]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197

[4]

Filippo Dell'Oro, Vittorino Pata. Memory relaxation of type III thermoelastic extensible beams and Berger plates. Evolution Equations and Control Theory, 2012, 1 (2) : 251-270. doi: 10.3934/eect.2012.1.251

[5]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations and Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[6]

Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141

[7]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[8]

E. N. Dancer. Some examples on solution structures for weakly nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 817-826. doi: 10.3934/dcds.2005.12.817

[9]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[10]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[11]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[12]

Alessia Berti, Maria Grazia Naso. Vibrations of a damped extensible beam between two stops. Evolution Equations and Control Theory, 2013, 2 (1) : 35-54. doi: 10.3934/eect.2013.2.35

[13]

Philippe Jaming, Vilmos Komornik. Moving and oblique observations of beams and plates. Evolution Equations and Control Theory, 2020, 9 (2) : 447-468. doi: 10.3934/eect.2020013

[14]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[15]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[16]

Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2022, 11 (4) : 1357-1372. doi: 10.3934/eect.2021047

[17]

Jose Carlos Camacho, Maria de los Santos Bruzon. Similarity reductions of a nonlinear model for vibrations of beams. Conference Publications, 2015, 2015 (special) : 176-184. doi: 10.3934/proc.2015.0176

[18]

Vilmos Komornik, Anna Chiara Lai, Paola Loreti. Simultaneous observability of infinitely many strings and beams. Networks and Heterogeneous Media, 2020, 15 (4) : 633-652. doi: 10.3934/nhm.2020017

[19]

Mounir Afilal, Abdelaziz Soufyane, Mauro de Lima Santos. Piezoelectric beams with magnetic effect and localized damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021056

[20]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations and Control Theory, 2022, 11 (2) : 583-603. doi: 10.3934/eect.2021015

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (230)
  • HTML views (471)
  • Cited by (1)

[Back to Top]