• Previous Article
    Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients
  • DCDS-B Home
  • This Issue
  • Next Article
    Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $
July  2019, 24(7): 3281-3298. doi: 10.3934/dcdsb.2018320

On a beam model related to flight structures with nonlocal energy damping

1. 

Department of Mathematics, State University of Londrina, 86057-970, Londrina, PR, Brazil

2. 

Nucleus of Exact and Technological Sciences, State University of Mato Grosso do Sul, 79804-970, Dourados, MS, Brazil

3. 

Center of Exact and Technological Sciences, State University of Paraná West, 85819-110, Cascavel, PR, Brazil

* Corresponding author. M. A. Jorge Silva has been supported by CNPq, grant 441414/2014-1

V. Narciso has been supported by FUNDECT, grant 219/2016

Received  November 2017 Revised  August 2018 Published  January 2019

This paper deals with new results on existence, uniqueness and stability for a class of nonlinear beams arising in connection with nonlocal dissipative models for flight structures with energy damping first proposed by Balakrishnan-Taylor [2]. More precisely, the following
$ n $
-dimensional model is addressed
$ u_{tt}-\kappa \Delta u+\Delta ^2u-\gamma\left[\int_{\Omega}\left(|\Delta u|^2+|u_t|^2\right)dx \right]^q\Delta u_t+f(u) = 0 \ in \ \Omega \times \mathbb{R}^+, $
where
$ \Omega\subset \mathbb{R}^n $
is a bounded domain with smooth boundary, the coefficient of extensibility
$ \kappa $
is nonnegative, the damping coefficient
$ \gamma $
is positive and
$ q\ge 1 $
. The nonlinear source
$ f(u) $
can be seen as an external forcing term of lower order. Our main results feature global existence and uniqueness, polynomial stability and a non-exponential decay prospect.
Citation: Marcio A. Jorge Silva, Vando Narciso, André Vicente. On a beam model related to flight structures with nonlocal energy damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3281-3298. doi: 10.3934/dcdsb.2018320
References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12. Google Scholar

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14. Google Scholar

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157.  doi: 10.1016/S0168-9274(03)00066-7.  Google Scholar

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21.   Google Scholar

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975. Google Scholar

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517.  doi: 10.1016/j.jde.2009.02.020.  Google Scholar

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994.  Google Scholar

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478.  doi: 10.1002/mma.577.  Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.  Google Scholar

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.  doi: 10.1016/j.jmaa.2012.07.004.  Google Scholar

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.  Google Scholar

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265.  doi: 10.2206/kyushumfs.30.257.  Google Scholar

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.  Google Scholar

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36.   Google Scholar

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.  Google Scholar

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38. Google Scholar

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

show all references

References:
[1]

A. V. Balakrishnan, A theory of nonlinear damping in flexible structures, Stabilization of flexible structures, (1988), 1–12. Google Scholar

[2]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[3]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.  Google Scholar

[4]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.  Google Scholar

[5]

R. W. Bass and D. Zes, Spillover, Nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 ed. L.W.Taylor, (1991), 1–14. Google Scholar

[6]

A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Applicable Analysis, 55 (1994), 61-78.  doi: 10.1080/00036819408840290.  Google Scholar

[7]

M. M. CavalcantiV. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.  doi: 10.1142/S0219199704001483.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math., 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[9]

H. R. ClarkM. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47 (2003), 139-157.  doi: 10.1016/S0168-9274(03)00066-7.  Google Scholar

[10]

H. R. Clark, Elastic membrane equation in bounded and unbounded domains, EJQTDE, 11 (2002), 1-21.   Google Scholar

[11]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[12]

E. H. Dowell, Aeroelasticity of Plates and Shells, Groninger, NL, Noordhoff Int. Publishing Co., 1975. Google Scholar

[13]

A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.  doi: 10.1088/0951-7715/6/3/007.  Google Scholar

[14]

C. GiorgiM. G. NasoV. Pata and M. Potomkin, Global attractors for the extensible thermoelastic beam system, J. Differential Equations, 246 (2009), 3496-3517.  doi: 10.1016/j.jde.2009.02.020.  Google Scholar

[15]

T. J. Hughes and J. E. Marsden, Mathematical Foundation of Elasticity, Dover Publications, Inc., New York, 1994.  Google Scholar

[16]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985-1008.  doi: 10.3934/dcds.2015.35.985.  Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[19]

H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.   Google Scholar

[20]

J. LimacoH. R. Clark and A. J. Feitosa, Beam evolution equation with variable coeficients, Math. Meth. Appl. Sci., 28 (2005), 457-478.  doi: 10.1002/mma.577.  Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.  Google Scholar

[22]

T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.  doi: 10.1016/j.na.2010.07.023.  Google Scholar

[23]

T. F. MaV. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.  doi: 10.1016/j.jmaa.2012.07.004.  Google Scholar

[24]

C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113.  doi: 10.1007/s00033-013-0324-2.  Google Scholar

[25]

M. Nakao, Convergence of solutions of the wave equation with a nonlinear dissipative term to the steady state, Mem. Fac. Sci. Kyushu Univ. Ser. A, 30 (1976), 257-265.  doi: 10.2206/kyushumfs.30.257.  Google Scholar

[26]

M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.  doi: 10.2969/jmsj/03040747.  Google Scholar

[27]

S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[28]

S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics, 17 (1950), 35-36.   Google Scholar

[29]

Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83-102.  doi: 10.1155/S1085337596000048.  Google Scholar

[30]

W. Zhang, Nonlinear damping model: Response to random excitation, 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, (1988), 27–38. Google Scholar

[31]

Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.  doi: 10.1016/j.jde.2013.02.008.  Google Scholar

[1]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[2]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[3]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[7]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[8]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[9]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[14]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[15]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[16]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[17]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[18]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (123)
  • HTML views (467)
  • Cited by (1)

[Back to Top]