An inhibitory uptake function is incorporated into the discrete, size-structured nonlinear chemostat model developed by Arino et al. (Journal of Mathematical Biology, 45(2002)). Different from the model with a monotonically increasing uptake function, we show that the inhibitory kinetics can induce very complex dynamics including stable equilibria, cycles and chaos (via the period-doubling cascade). In particular, when the nutrient concentration in the input feed to the chemostat $ S^0 $ is larger than the upper break-even concentration value $ \mu $, the model exhibits three types of bistability allowing a stable equilibrium to coexist with another stable equilibrium, or a stable cycle or a chaotic attractor.
Citation: |
Figure 3.
Numerical solutions of system (11) with
Figure 4.
Numerical solutions of system (11) with
Figure 5.
Numerical solutions of system (11) with
[1] |
J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotech. Bioeng., 10 (1968), 707-723.
![]() |
[2] |
J. Arino, J.-L. Gouze and A. Sciandra, A discrete, size-structured model of phytoplankton growth in the chemostat, J. Math. Biol., 45 (2002), 313-336.
doi: 10.1007/s002850200160.![]() ![]() ![]() |
[3] |
R. A. Armstrong and R. McGehee, Competitive exclusion, Am. Nat., 115 (1980), 151-170.
doi: 10.1086/283553.![]() ![]() ![]() |
[4] |
L. Becks, F. M. Hilker, H. Malchow, K. Jürgens and H. Arndt, Experimental demonstration of chaos in a microbial food web, Nature, 435 (2005), 1226-1229.
![]() |
[5] |
B. Boon and H. Laudeuout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447.
![]() |
[6] |
A. W. Bush and A. E. Cook, The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, J. Theor. Biol., 63 (1976), 385-395.
![]() |
[7] |
G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient outake, SIAM J. Appl. Math., 45 (1985), 138-151.
doi: 10.1137/0145006.![]() ![]() ![]() |
[8] |
E. P. Cohen and H. Eagle, A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture, J. Exp. Med., 113 (1961), 467-474.
![]() |
[9] |
J. M. Cushing, A competition model for size-structured species, SIAM J. Appl. Math., 49 (1989), 838-858.
doi: 10.1137/0149049.![]() ![]() ![]() |
[10] |
J. M. Cushing, An Introduction to Structured Population Dynamics, Reginal Conference Series in Applied Mathematics 71, SIAM, Philadelphia, PA, 1998.
doi: 10.1137/1.9781611970005.![]() ![]() ![]() |
[11] |
D. E. Dykhuizen and A. M. Dean, Evolution of specialists in an experimental microcosm, Genetics, 167 (2005), 2015-2026.
![]() |
[12] |
T. B. K. Gage, F. M. Williams and J. B. Horton, Division synchrony and the dynamics of microbial populations: A size-specific model, Theor. Pop. Bio., 26 (1984), 296-314.
doi: 10.1016/0040-5809(84)90035-2.![]() ![]() ![]() |
[13] |
M. Golubitsky, E. B. Keeler and M. Rothschild, Convergence of the age-structure: Applications of the projective metric, Theor. Pop. Bio., 7 (1975), 84-93.
doi: 10.1016/0040-5809(75)90007-6.![]() ![]() ![]() |
[14] |
S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, Science, 207 (1980), 1491-1493.
![]() |
[15] |
S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in countinuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030.![]() ![]() ![]() |
[16] |
L. Jones and S. P. Ellner, Effects of rapid prey evolution on predator-prey cycles, J. Math. Biol., 55 (2007), 541-573.
doi: 10.1007/s00285-007-0094-6.![]() ![]() ![]() |
[17] |
J. L. Jost, J. F. Drake, A. G. Fredrickson and H. M. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandu and glucose in a minimal medium, J. Bacteriol., 113 (1973), 834-841.
![]() |
[18] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68, Springer-Verlag, New York, 1986.
doi: 10.1007/978-3-662-13159-6.![]() ![]() ![]() |
[19] |
S. Pavlou and I. G. Kevrekidis, Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies, Math. Biosci., 108 (1992), 1-55.
doi: 10.1016/0025-5564(92)90002-E.![]() ![]() ![]() |
[20] |
E. Senior, A. T. Bull and J. H. Slater, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature, 263 (1976), 476-479.
![]() |
[21] |
H. L. Smith, A discrete, size-structured model of microbial growth and competition in the chemostat, J. Math. Biol., 34 (1996), 734-754.
doi: 10.1007/BF00161517.![]() ![]() ![]() |
[22] | |
[23] |
H. L. Smith and X.-Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemostat model, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 183-191.
doi: 10.3934/dcdsb.2001.1.183.![]() ![]() ![]() |
[24] |
L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general delayed response functions and differential removal rates, J. Math. Anal. Appl., 321 (2006), 452-468.
doi: 10.1016/j.jmaa.2005.08.014.![]() ![]() ![]() |
[25] |
H. A. Wichman, J. Millstein and J. J. Bull, Adaptive molecular evolution for 13,000 phage generations: A possible arms race, Genetics, 170 (2005), 19-31.
![]() |
[26] |
L. M. Wick, H. Weilenmann and T. Egli, The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics, Microbiology (Reading, Engl.), 148 (2002), 2889-2902.
![]() |
[27] |
G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J. Appl. Math., 52 (1992), 222-233.
doi: 10.1137/0152012.![]() ![]() ![]() |
[28] |
J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885.
doi: 10.1137/050627514.![]() ![]() ![]() |
[29] |
H. Xia, G. S. K. Wolkowicz and L. Wang, Transient oscillations induced by delayed growth response in the chemostat, J. Math. Biol., 50 (2005), 489-530.
doi: 10.1007/s00285-004-0311-5.![]() ![]() ![]() |