July  2019, 24(7): 3439-3451. doi: 10.3934/dcdsb.2018327

Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics

a. 

School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China

b. 

School of Computer Science and Network Security, Dongguan University of Technology, Dongguan, 523808, Guangdong, China

c. 

College of Finance and Statistics, Hunan University, Changsha, 410079, Hunan, China

d. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada

* Corresponding author: Lin Wang

Received  May 2018 Revised  August 2018 Published  July 2019 Early access  January 2019

Fund Project: The work of DZ was partially supported by the National Natural Science Foundation of China (No. 11501193) and the China Post Doctorial Fund (No. 2015M582335). LW was partially supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

An inhibitory uptake function is incorporated into the discrete, size-structured nonlinear chemostat model developed by Arino et al. (Journal of Mathematical Biology, 45(2002)). Different from the model with a monotonically increasing uptake function, we show that the inhibitory kinetics can induce very complex dynamics including stable equilibria, cycles and chaos (via the period-doubling cascade). In particular, when the nutrient concentration in the input feed to the chemostat $ S^0 $ is larger than the upper break-even concentration value $ \mu $, the model exhibits three types of bistability allowing a stable equilibrium to coexist with another stable equilibrium, or a stable cycle or a chaotic attractor.

Citation: Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327
References:
[1]

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotech. Bioeng., 10 (1968), 707-723. 

[2]

J. ArinoJ.-L. Gouze and A. Sciandra, A discrete, size-structured model of phytoplankton growth in the chemostat, J. Math. Biol., 45 (2002), 313-336.  doi: 10.1007/s002850200160.

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion, Am. Nat., 115 (1980), 151-170.  doi: 10.1086/283553.

[4]

L. BecksF. M. HilkerH. MalchowK. Jürgens and H. Arndt, Experimental demonstration of chaos in a microbial food web, Nature, 435 (2005), 1226-1229. 

[5]

B. Boon and H. Laudeuout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447. 

[6]

A. W. Bush and A. E. Cook, The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, J. Theor. Biol., 63 (1976), 385-395. 

[7]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient outake, SIAM J. Appl. Math., 45 (1985), 138-151.  doi: 10.1137/0145006.

[8]

E. P. Cohen and H. Eagle, A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture, J. Exp. Med., 113 (1961), 467-474. 

[9]

J. M. Cushing, A competition model for size-structured species, SIAM J. Appl. Math., 49 (1989), 838-858.  doi: 10.1137/0149049.

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, Reginal Conference Series in Applied Mathematics 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[11]

D. E. Dykhuizen and A. M. Dean, Evolution of specialists in an experimental microcosm, Genetics, 167 (2005), 2015-2026. 

[12]

T. B. K. GageF. M. Williams and J. B. Horton, Division synchrony and the dynamics of microbial populations: A size-specific model, Theor. Pop. Bio., 26 (1984), 296-314.  doi: 10.1016/0040-5809(84)90035-2.

[13]

M. GolubitskyE. B. Keeler and M. Rothschild, Convergence of the age-structure: Applications of the projective metric, Theor. Pop. Bio., 7 (1975), 84-93.  doi: 10.1016/0040-5809(75)90007-6.

[14]

S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, Science, 207 (1980), 1491-1493. 

[15]

S. B. HsuS. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in countinuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.  doi: 10.1137/0132030.

[16]

L. Jones and S. P. Ellner, Effects of rapid prey evolution on predator-prey cycles, J. Math. Biol., 55 (2007), 541-573.  doi: 10.1007/s00285-007-0094-6.

[17]

J. L. JostJ. F. DrakeA. G. Fredrickson and H. M. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandu and glucose in a minimal medium, J. Bacteriol., 113 (1973), 834-841. 

[18]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-662-13159-6.

[19]

S. Pavlou and I. G. Kevrekidis, Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies, Math. Biosci., 108 (1992), 1-55.  doi: 10.1016/0025-5564(92)90002-E.

[20]

E. SeniorA. T. Bull and J. H. Slater, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature, 263 (1976), 476-479. 

[21]

H. L. Smith, A discrete, size-structured model of microbial growth and competition in the chemostat, J. Math. Biol., 34 (1996), 734-754.  doi: 10.1007/BF00161517.

[22]
[23]

H. L. Smith and X.-Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemostat model, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 183-191.  doi: 10.3934/dcdsb.2001.1.183.

[24]

L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general delayed response functions and differential removal rates, J. Math. Anal. Appl., 321 (2006), 452-468.  doi: 10.1016/j.jmaa.2005.08.014.

[25]

H. A. WichmanJ. Millstein and J. J. Bull, Adaptive molecular evolution for 13,000 phage generations: A possible arms race, Genetics, 170 (2005), 19-31. 

[26]

L. M. WickH. Weilenmann and T. Egli, The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics, Microbiology (Reading, Engl.), 148 (2002), 2889-2902. 

[27]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J. Appl. Math., 52 (1992), 222-233.  doi: 10.1137/0152012.

[28]

J. WuH. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885.  doi: 10.1137/050627514.

[29]

H. XiaG. S. K. Wolkowicz and L. Wang, Transient oscillations induced by delayed growth response in the chemostat, J. Math. Biol., 50 (2005), 489-530.  doi: 10.1007/s00285-004-0311-5.

show all references

References:
[1]

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotech. Bioeng., 10 (1968), 707-723. 

[2]

J. ArinoJ.-L. Gouze and A. Sciandra, A discrete, size-structured model of phytoplankton growth in the chemostat, J. Math. Biol., 45 (2002), 313-336.  doi: 10.1007/s002850200160.

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion, Am. Nat., 115 (1980), 151-170.  doi: 10.1086/283553.

[4]

L. BecksF. M. HilkerH. MalchowK. Jürgens and H. Arndt, Experimental demonstration of chaos in a microbial food web, Nature, 435 (2005), 1226-1229. 

[5]

B. Boon and H. Laudeuout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447. 

[6]

A. W. Bush and A. E. Cook, The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, J. Theor. Biol., 63 (1976), 385-395. 

[7]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient outake, SIAM J. Appl. Math., 45 (1985), 138-151.  doi: 10.1137/0145006.

[8]

E. P. Cohen and H. Eagle, A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture, J. Exp. Med., 113 (1961), 467-474. 

[9]

J. M. Cushing, A competition model for size-structured species, SIAM J. Appl. Math., 49 (1989), 838-858.  doi: 10.1137/0149049.

[10]

J. M. Cushing, An Introduction to Structured Population Dynamics, Reginal Conference Series in Applied Mathematics 71, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[11]

D. E. Dykhuizen and A. M. Dean, Evolution of specialists in an experimental microcosm, Genetics, 167 (2005), 2015-2026. 

[12]

T. B. K. GageF. M. Williams and J. B. Horton, Division synchrony and the dynamics of microbial populations: A size-specific model, Theor. Pop. Bio., 26 (1984), 296-314.  doi: 10.1016/0040-5809(84)90035-2.

[13]

M. GolubitskyE. B. Keeler and M. Rothschild, Convergence of the age-structure: Applications of the projective metric, Theor. Pop. Bio., 7 (1975), 84-93.  doi: 10.1016/0040-5809(75)90007-6.

[14]

S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, Science, 207 (1980), 1491-1493. 

[15]

S. B. HsuS. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in countinuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.  doi: 10.1137/0132030.

[16]

L. Jones and S. P. Ellner, Effects of rapid prey evolution on predator-prey cycles, J. Math. Biol., 55 (2007), 541-573.  doi: 10.1007/s00285-007-0094-6.

[17]

J. L. JostJ. F. DrakeA. G. Fredrickson and H. M. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandu and glucose in a minimal medium, J. Bacteriol., 113 (1973), 834-841. 

[18]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-662-13159-6.

[19]

S. Pavlou and I. G. Kevrekidis, Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies, Math. Biosci., 108 (1992), 1-55.  doi: 10.1016/0025-5564(92)90002-E.

[20]

E. SeniorA. T. Bull and J. H. Slater, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature, 263 (1976), 476-479. 

[21]

H. L. Smith, A discrete, size-structured model of microbial growth and competition in the chemostat, J. Math. Biol., 34 (1996), 734-754.  doi: 10.1007/BF00161517.

[22]
[23]

H. L. Smith and X.-Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemostat model, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 183-191.  doi: 10.3934/dcdsb.2001.1.183.

[24]

L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general delayed response functions and differential removal rates, J. Math. Anal. Appl., 321 (2006), 452-468.  doi: 10.1016/j.jmaa.2005.08.014.

[25]

H. A. WichmanJ. Millstein and J. J. Bull, Adaptive molecular evolution for 13,000 phage generations: A possible arms race, Genetics, 170 (2005), 19-31. 

[26]

L. M. WickH. Weilenmann and T. Egli, The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics, Microbiology (Reading, Engl.), 148 (2002), 2889-2902. 

[27]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM J. Appl. Math., 52 (1992), 222-233.  doi: 10.1137/0152012.

[28]

J. WuH. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885.  doi: 10.1137/050627514.

[29]

H. XiaG. S. K. Wolkowicz and L. Wang, Transient oscillations induced by delayed growth response in the chemostat, J. Math. Biol., 50 (2005), 489-530.  doi: 10.1007/s00285-004-0311-5.

Figure 1.  Bifurcation diagram of the limiting system (7). Here $ f(s) = \frac{as}{1+0.1s+0.01s^2}, E = 0.1, S^{0} = 100, U_{0} = 70 $ with $ a\in[0.049, 0.059] $ Thus $ aS^{0}>1 $ and $ S^{0}> \mu $. A cascade of period-doublings to chaos occurs as $ a $ increases
Figure 2.  Left: a numerical solution of the limiting system (7) with $ U_0 = 60 $; Right: a numerical solution of system (11) with $ (U_0, S_0) = (60,6) $. Here $ f(s) = \frac{0.05s}{1+0.1s+0.01s^2} $, $ E = 0.1 $, $ S^{0} = 100 $
Figure 3.  Numerical solutions of system (11) with $ f(s) = \frac{0.05s}{1+0.1s+0.01s^2} $, $ E = 0.1 $, $ S^{0} = 100 $. Left: $ (U_t,S_t)\to E_0 = (0, S^0) $ as $ t\to\infty $, initial condition $ (U_0, S_0) = (10,6) $ was used; Right: $ (U_t, S_t) \to E_1 = (S^0-\lambda, \lambda) $ as $ t\to\infty $, initial condition was $ (U_0, S_0) = (80,6) $
Figure 4.  Numerical solutions of system (11) with $ f(s) = \frac{0.054s}{1+0.1s+0.01s^2} $, $ E = 0.1 $, $ S^{0} = 100 $. Left: $ (U_t,S_t)\to (0, S^0) $ as $ t\to\infty $, initial condition $ (U_0, S_0) = (10,6) $ was used; Right: $ (U_t, S_t) $ approaches a stable $ 2-cycle $, initial condition was $ (U_0, S_0) = (80,6) $
Figure 5.  Numerical solutions of system (11) with $ f(s) = \frac{0.059s}{1+0.1s+0.01s^2} $, $ E = 0.1 $, $ S^{0} = 100 $. Left: $ (U_t,S_t)\to (0, S^0) $ as $ t\to\infty $, initial condition $ (U_0, S_0) = (10,6) $ was used; Right: $ (U_t, S_t) $ approaches a chaotic attractor, initial condition was $ (U_0, S_0) = (80,6) $
[1]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[2]

Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022, 9 (3) : 421-450. doi: 10.3934/jcd.2022009

[3]

Yuri Nechepurenko, Michael Khristichenko, Dmitry Grebennikov, Gennady Bocharov. Bistability analysis of virus infection models with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2385-2401. doi: 10.3934/dcdss.2020166

[4]

Josselin Garnier, George Papanicolaou, Tzu-Wei Yang. Mean field model for collective motion bistability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 851-879. doi: 10.3934/dcdsb.2018210

[5]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[6]

Sze-Bi Hsu, Cheng-Che Li. A discrete-delayed model with plasmid-bearing, plasmid-free competition in a chemostat. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 699-718. doi: 10.3934/dcdsb.2005.5.699

[7]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[8]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[9]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[10]

Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056

[11]

Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 111-123. doi: 10.3934/mbe.2006.3.111

[12]

María J. Cáceres, Ricarda Schneider. Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinetic and Related Models, 2017, 10 (3) : 587-612. doi: 10.3934/krm.2017024

[13]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[14]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[15]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5197-5216. doi: 10.3934/dcdsb.2020339

[18]

Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022017

[19]

Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 495-520. doi: 10.3934/dcdsb.2002.2.495

[20]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (329)
  • HTML views (439)
  • Cited by (1)

Other articles
by authors

[Back to Top]