-
Previous Article
Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system
- DCDS-B Home
- This Issue
- Next Article
Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production
1. | School of Mathematical Sciences, Peking University, Beijing, 100871, China |
2. | School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China |
In this paper we develop a new and convenient technique, with fractional Gagliardo-Nirenberg type inequalities inter alia involved, to treat the quasilinear fully parabolic chemotaxis system with indirect signal production: $ u_t = \nabla\cdot(D(u)\nabla u-S(u)\nabla v) $, $ \tau_1v_t = \Delta v-a_1v+b_1w $, $ \tau_2w_t = \Delta w-a_2w+b_2u $, under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset\Bbb{R}^{n} $ ($ n\geq 1 $), where $ \tau_i,a_i,b_i>0 $ ($ i = 1,2 $) are constants, and the diffusivity $ D $ and the density-dependent sensitivity $ S $ satisfy $ D(s)\geq a_0(s+1)^{-\alpha} $ and $ 0\leq S(s)\leq b_0(s+1)^{\beta} $ for all $ s\geq 0 $ with $ a_0,b_0>0 $ and $ \alpha,\beta\in\Bbb R $. It is proved that if $ \alpha+\beta<3 $ and $ n = 1 $, or $ \alpha+\beta<4/n $ with $ n\geq 2 $, for any properly regular initial data, this problem has a globally bounded and classical solution. Furthermore, consider the quasilinear attraction-repulsion chemotaxis model: $ u_t = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(u\nabla z)+\xi\nabla\cdot(u\nabla w) $, $ z_t = \Delta z-\rho z+\mu u $, $ w_t = \Delta w-\delta w+\gamma u $, where $ \chi,\mu,\xi,\gamma,\rho,\delta>0 $, and the diffusivity $ D $ fulfills $ D(s)\geq c_0(s+1)^{M-1} $ for any $ s\geq 0 $ with $ c_0>0 $ and $ M\in\Bbb R $. As a corollary of the aforementioned assertion, it is shown that when the repulsion cancels the attraction (i.e. $ \chi\mu = \xi\gamma $), the solution is globally bounded if $ M>-1 $ and $ n = 1 $, or $ M>2-4/n $ with $ n\geq 2 $. This seems to be the first result for this quasilinear fully parabolic problem that genuinely concerns the contribution of repulsion.
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
H. Amann,
Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 593-676.
|
[3] |
J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer-Verlag, Berlin, 1976. |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[6] |
A. Friedman, Partial Differential Equations, Holt, Rinehard and Winston, New York, 1969. |
[7] |
K. Fujie and T. Senba,
Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.
doi: 10.1016/j.jde.2017.02.031. |
[8] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159-175. |
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. |
[10] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super Pisa Cl. Sci., 24 (1997), 633-683.
|
[11] |
M. Hieber and J. Prüss,
Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.
doi: 10.1080/03605309708821314. |
[12] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[13] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[14] |
S. Ishida, K. Seki and T. Yokota,
Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[15] |
H. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[16] |
H. Jin and Z. Wang,
Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.
doi: 10.1002/mma.3080. |
[17] |
H. Jin and T. Xiang,
Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Continuous Dynam. Systems - B, 23 (2018), 3071-3085.
doi: 10.3934/dcdsb.2017197. |
[18] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
|
[19] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968. |
[20] |
J. Lankeit,
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.
doi: 10.1016/j.jde.2016.12.007. |
[21] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
doi: 10.1142/3302. |
[22] |
K. Lin, C. Mu and L. Wang,
Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.
doi: 10.1016/j.jmaa.2014.12.052. |
[23] |
D. Liu and Y. Tao,
Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.
doi: 10.1002/mma.3240. |
[24] |
J. Liu and Z. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[25] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.
|
[26] |
N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint. |
[27] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[28] |
L. Nirenberg,
An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 733-737.
|
[29] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura,
Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.
doi: 10.1016/S0362-546X(01)00815-X. |
[30] |
K. Osaki and A. Yagi,
Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[31] |
K. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[32] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[33] |
Y. Tao and M. Winkler,
Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.
doi: 10.4171/JEMS/749. |
[34] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. |
[36] |
H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[37] |
M. Winkler,
A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[38] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[39] |
M. Winkler,
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426. |
[40] |
M. Winkler,
Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[41] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
H. Amann,
Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 593-676.
|
[3] |
J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer-Verlag, Berlin, 1976. |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[6] |
A. Friedman, Partial Differential Equations, Holt, Rinehard and Winston, New York, 1969. |
[7] |
K. Fujie and T. Senba,
Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.
doi: 10.1016/j.jde.2017.02.031. |
[8] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159-175. |
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. |
[10] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super Pisa Cl. Sci., 24 (1997), 633-683.
|
[11] |
M. Hieber and J. Prüss,
Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.
doi: 10.1080/03605309708821314. |
[12] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[13] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[14] |
S. Ishida, K. Seki and T. Yokota,
Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[15] |
H. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[16] |
H. Jin and Z. Wang,
Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.
doi: 10.1002/mma.3080. |
[17] |
H. Jin and T. Xiang,
Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Continuous Dynam. Systems - B, 23 (2018), 3071-3085.
doi: 10.3934/dcdsb.2017197. |
[18] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
|
[19] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968. |
[20] |
J. Lankeit,
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.
doi: 10.1016/j.jde.2016.12.007. |
[21] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
doi: 10.1142/3302. |
[22] |
K. Lin, C. Mu and L. Wang,
Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.
doi: 10.1016/j.jmaa.2014.12.052. |
[23] |
D. Liu and Y. Tao,
Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.
doi: 10.1002/mma.3240. |
[24] |
J. Liu and Z. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[25] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.
|
[26] |
N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint. |
[27] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[28] |
L. Nirenberg,
An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 733-737.
|
[29] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura,
Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.
doi: 10.1016/S0362-546X(01)00815-X. |
[30] |
K. Osaki and A. Yagi,
Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[31] |
K. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[32] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[33] |
Y. Tao and M. Winkler,
Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.
doi: 10.4171/JEMS/749. |
[34] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. |
[36] |
H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[37] |
M. Winkler,
A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[38] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[39] |
M. Winkler,
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426. |
[40] |
M. Winkler,
Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[41] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[1] |
Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022041 |
[2] |
Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145 |
[3] |
Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133 |
[4] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064 |
[5] |
Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 |
[6] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[7] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022118 |
[8] |
Runlin Hu, Pan Zheng, Zhangqin Gao. Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022018 |
[9] |
Guangyu Xu. Emergence of lager densities in chemotaxis system with indirect signal production and non-radial symmetry case. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022096 |
[10] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[11] |
Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045 |
[12] |
Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 |
[13] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[14] |
Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092 |
[15] |
Xu Pan, Liangchen Wang. On a quasilinear fully parabolic two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 361-391. doi: 10.3934/dcdsb.2021047 |
[16] |
Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018 |
[17] |
Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012 |
[18] |
Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031 |
[19] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[20] |
Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022071 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]