Advanced Search
Article Contents
Article Contents

Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production

  • * Corresponding author: Wei Wang

    * Corresponding author: Wei Wang

This work is supported by the National Natural Science Foundation of China (11671066, 11571020, 11671021)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we develop a new and convenient technique, with fractional Gagliardo-Nirenberg type inequalities inter alia involved, to treat the quasilinear fully parabolic chemotaxis system with indirect signal production: $ u_t = \nabla\cdot(D(u)\nabla u-S(u)\nabla v) $, $ \tau_1v_t = \Delta v-a_1v+b_1w $, $ \tau_2w_t = \Delta w-a_2w+b_2u $, under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset\Bbb{R}^{n} $ ($ n\geq 1 $), where $ \tau_i,a_i,b_i>0 $ ($ i = 1,2 $) are constants, and the diffusivity $ D $ and the density-dependent sensitivity $ S $ satisfy $ D(s)\geq a_0(s+1)^{-\alpha} $ and $ 0\leq S(s)\leq b_0(s+1)^{\beta} $ for all $ s\geq 0 $ with $ a_0,b_0>0 $ and $ \alpha,\beta\in\Bbb R $. It is proved that if $ \alpha+\beta<3 $ and $ n = 1 $, or $ \alpha+\beta<4/n $ with $ n\geq 2 $, for any properly regular initial data, this problem has a globally bounded and classical solution. Furthermore, consider the quasilinear attraction-repulsion chemotaxis model: $ u_t = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(u\nabla z)+\xi\nabla\cdot(u\nabla w) $, $ z_t = \Delta z-\rho z+\mu u $, $ w_t = \Delta w-\delta w+\gamma u $, where $ \chi,\mu,\xi,\gamma,\rho,\delta>0 $, and the diffusivity $ D $ fulfills $ D(s)\geq c_0(s+1)^{M-1} $ for any $ s\geq 0 $ with $ c_0>0 $ and $ M\in\Bbb R $. As a corollary of the aforementioned assertion, it is shown that when the repulsion cancels the attraction (i.e. $ \chi\mu = \xi\gamma $), the solution is globally bounded if $ M>-1 $ and $ n = 1 $, or $ M>2-4/n $ with $ n\geq 2 $. This seems to be the first result for this quasilinear fully parabolic problem that genuinely concerns the contribution of repulsion.

    Mathematics Subject Classification: Primary: 35B35, 35B40, 35K55; Secondary: 92C17.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. AdamsSobolev Spaces, Academic Press, New York, 1975. 
    [2] H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 593-676. 
    [3] J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer-Verlag, Berlin, 1976.
    [4] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [5] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.
    [6] A. Friedman, Partial Differential Equations, Holt, Rinehard and Winston, New York, 1969.
    [7] K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.  doi: 10.1016/j.jde.2017.02.031.
    [8] H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159-175.
    [9] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.
    [10] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super Pisa Cl. Sci., 24 (1997), 633-683. 
    [11] M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.
    [12] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [13] B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.
    [14] S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.
    [15] H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.  doi: 10.1016/j.jmaa.2014.09.049.
    [16] H. Jin and Z. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080.
    [17] H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Continuous Dynam. Systems - B, 23 (2018), 3071-3085.  doi: 10.3934/dcdsb.2017197.
    [18] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. 
    [19] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968.
    [20] J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.
    [21] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302.
    [22] K. LinC. Mu and L. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.  doi: 10.1016/j.jmaa.2014.12.052.
    [23] D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.  doi: 10.1002/mma.3240.
    [24] J. Liu and Z. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722.
    [25] M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730. 
    [26] N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint.
    [27] T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. 
    [28] L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 733-737. 
    [29] K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [30] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 
    [31] K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. 
    [32] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.
    [33] Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.
    [34] J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.
    [35] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978.
    [36] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.
    [37] M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.  doi: 10.1002/mma.319.
    [38] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [39] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [40] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.
    [41] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
  • 加载中

Article Metrics

HTML views(672) PDF downloads(539) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint