Reaction-diffusion equations on time-variable domains are instrinsically nonautonomous even if the coefficients in the equation do not depend explicitly on time. Thus the appropriate asymptotic concepts, such as attractors, are nonautonomous. Forward attracting sets based on omega-limit sets are considered in this paper. These are related to the Vishik uniform attractor but are not as restrictive since they depend only on the dynamics in the distant future. They are usually not invariant. Here it is shown that they are asymptotically positively invariant, in general, and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant as well as upper semi continuous dependence in a parameter will be established. These results also apply to reaction-diffusion equations on a fixed domain.
Citation: |
A. N. Carvalho, J. A. Langa and J. C. Robinson,
Attractors of Infinite Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4.![]() ![]() ![]() |
|
V. V. Chepyzhov and M. I. Vishik,
Attractors for equations of mathematical physics, Amer. Math. Soc., Providence, Rhode Island, 2002.
![]() ![]() |
|
H. Crauel
, P. E. Kloeden
and J. Real
, Stochastic partial differential equations on time-varying domains, Boletín de la Sociedad Española de Matemática Aplicada., 51 (2010)
, 41-48.
doi: 10.1007/bf03322552.![]() ![]() ![]() |
|
H. Crauel
, P. E. Kloeden
and M. Yang
, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics & Dynamics, 11 (2011)
, 301-314.
doi: 10.1142/S0219493711003292.![]() ![]() ![]() |
|
J. K. Hale,
Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988.
![]() ![]() |
|
P. E. Kloeden
, Asymptotic invariance and the approximation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016)
, 179-189.
doi: 10.3934/jcd.2016009.![]() ![]() ![]() |
|
P. E. Kloeden
and T. Lorenz
, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016)
, 259-268.
doi: 10.1090/proc/12735.![]() ![]() ![]() |
|
P. E. Kloeden, T. Lorenz and M. Yang, Forward attractors in discrete time nonautonomous
dynamical systems, in Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics, 164, Editors: O. Dosly, P.E, Kloeden, S. Pinelas;
Springer, Heidelberg, (2016), 313–322.
doi: 10.1007/978-3-319-32857-7_29.![]() ![]() ![]() |
|
P. E. Kloeden
, P. Marín-Rubio
and J. Real
, Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Eqns., 244 (2008)
, 2062-2090.
doi: 10.1016/j.jde.2007.10.031.![]() ![]() ![]() |
|
P. E. Kloeden
, C. Pötzsche
and M. Rasmussen
, Limitations of pullback attractors of processes, J. Difference Eqns. Applns., 18 (2012)
, 693-701.
doi: 10.1080/10236198.2011.578070.![]() ![]() ![]() |
|
P. E. Kloeden and M. Rasmussen,
Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011.
doi: 10.1090/surv/176.![]() ![]() ![]() |
|
P. E. Kloeden
, J. Real
and C. Y. Sun
, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Eqns., 246 (2009)
, 4702-4730.
doi: 10.1016/j.jde.2008.11.017.![]() ![]() ![]() |
|
P. E. Kloeden
and M. Yang
, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016)
, 513-525.
doi: 10.1080/10236198.2015.1107550.![]() ![]() ![]() |
|
J. P. Lasalle,
The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.
![]() ![]() |
|
M. I. Vishik,
Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992.
![]() ![]() |