\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Forward attracting sets of reaction-diffusion equations on variable domains

  • 1Corresponding author

    1Corresponding author

Dedicated to the memory of V. S. Mel’nik.

Abstract Full Text(HTML) Related Papers Cited by
  • Reaction-diffusion equations on time-variable domains are instrinsically nonautonomous even if the coefficients in the equation do not depend explicitly on time. Thus the appropriate asymptotic concepts, such as attractors, are nonautonomous. Forward attracting sets based on omega-limit sets are considered in this paper. These are related to the Vishik uniform attractor but are not as restrictive since they depend only on the dynamics in the distant future. They are usually not invariant. Here it is shown that they are asymptotically positively invariant, in general, and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant as well as upper semi continuous dependence in a parameter will be established. These results also apply to reaction-diffusion equations on a fixed domain.

    Mathematics Subject Classification: Primary: 37B55; Secondary: 37L30, 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of Infinite Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.
      V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc., Providence, Rhode Island, 2002.
      H. Crauel , P. E. Kloeden  and  J. Real , Stochastic partial differential equations on time-varying domains, Boletín de la Sociedad Española de Matemática Aplicada., 51 (2010) , 41-48.  doi: 10.1007/bf03322552.
      H. Crauel , P. E. Kloeden  and  M. Yang , Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics & Dynamics, 11 (2011) , 301-314.  doi: 10.1142/S0219493711003292.
      J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988.
      P. E. Kloeden , Asymptotic invariance and the approximation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016) , 179-189.  doi: 10.3934/jcd.2016009.
      P. E. Kloeden  and  T. Lorenz , Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016) , 259-268.  doi: 10.1090/proc/12735.
      P. E. Kloeden, T. Lorenz and M. Yang, Forward attractors in discrete time nonautonomous dynamical systems, in Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics, 164, Editors: O. Dosly, P.E, Kloeden, S. Pinelas; Springer, Heidelberg, (2016), 313–322. doi: 10.1007/978-3-319-32857-7_29.
      P. E. Kloeden , P. Marín-Rubio  and  J. Real , Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Eqns., 244 (2008) , 2062-2090.  doi: 10.1016/j.jde.2007.10.031.
      P. E. Kloeden , C. Pötzsche  and  M. Rasmussen , Limitations of pullback attractors of processes, J. Difference Eqns. Applns., 18 (2012) , 693-701.  doi: 10.1080/10236198.2011.578070.
      P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011. doi: 10.1090/surv/176.
      P. E. Kloeden , J. Real  and  C. Y. Sun , Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Eqns., 246 (2009) , 4702-4730.  doi: 10.1016/j.jde.2008.11.017.
      P. E. Kloeden  and  M. Yang , Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016) , 513-525.  doi: 10.1080/10236198.2015.1107550.
      J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.
      M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992.
  • 加载中
SHARE

Article Metrics

HTML views(452) PDF downloads(245) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return