• Previous Article
    Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping
September  2019, 24(9): 4739-4753. doi: 10.3934/dcdsb.2019028

Dynamics of a predator-prey model with state-dependent carrying capacity

1. 

Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China

2. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B5A3, Canada

3. 

North-West Plateau Institute of Biology, Key Laboratory of Ecology Restoration in Cold Region in Qinghai Province, the Chinese Academy of Sciences, Xining, Qinghai 810001, China

* Corresponding author

Received  September 2017 Revised  May 2018 Published  September 2019 Early access  February 2019

Vegetation and plateau pika are two key species in alpine meadow ecosystems on the Tibetan Plateau. It is frequently observed on the field that plateau pika reduces the carrying capacity of vegetation and the mortality of plateau pika increases along with the increasing height of vegetation. This motivates us to propose and study a predator-prey model with state-dependent carrying capacity. Theoretical analysis and numerical simulations show that the model exhibits complex dynamics including the occurrence of saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation, and the coexistence of two stable equilibria.

Citation: Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028
References:
[1]

T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring management and restoration, Grassl. Sci., 53 (2007), 1-7.  doi: 10.1111/j.1744-697X.2007.00073.x.

[2] S. Cai and Z. Qian, Introduction of Qualitative Theory of Ordinary Differential Equations, Higher Education Press, Beijing, 1994. 
[3] A. Hastings and L. Gross, Encyclopedia of Theoretical Ecology, University of California Press, Berkeley, 2012. 
[4]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5-60.  doi: 10.4039/entm9745fv.

[5]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.

[6]

C. Lai and A. Smith, Keystone status of plateau pika (Ochotona curzoniae): Effect of control on biodiversity of native birds, Biodivers. Conserv., 12 (2003), 1901-1912. 

[7]

Q. LiJ. Li and Q. Dong, Study on the effect of fencing on Kobrecia parva alpine meadow pasture at different degrading stages in Yangtze and Yellow river headwaters, Pratacultural Sci., 23 (2006), 16-21. 

[8]

Y. LiX. Zhao and G. Cao, Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station, Plateau Meteorol, 23 (2004), 558-567. 

[9]

W. LiuX. WangL. Zhou and H. Zhou, Studies on destruction, prevention and control of plateau pikas in Kobresia pygmaea meadow, Acta Theriol. Sin., 23 (2003), 214-219. 

[10] Z. Ma and Y. Zhou, The Qualitative and Stability Methods of Ordinary Differential Equations, Science Press, Beijing, 2001. 
[11]

J. QuM. Liu and M. Yang, Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan plateau, Eur. J. Wildl. Res., 58 (2012), 269-277. 

[12]

M. L. Rosenzweig and R. H. Macarthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. 

[13]

S. Shen and Y. Chen, Preliminary research on ecology of the plateau pica at Dawu area, Guoluo, Qinghai province, Acta Theriol. Sin., 4 (1984), 107-115. 

[14]

Y. Shi, On the influences of range land vegetation to the density of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 3 (1983), 181-187. 

[15]

A. T. Smith and J. M. Foggin, The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau, Anim. Conserv., 2 (1999), 235-240. 

[16]

J. WangW. Wei and Y. Zhang, The sex ratio of plateau pika's population, Acta Theriol. Sin., 24 (2004), 177-181. 

[17]

X. Wang and K. Dai, Natural longevity of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 9 (1989), 56-62. 

[18]

X. Wang and A. T. Smith, On the natural winter mortality of the plateau pika (Ochotona Curzoniae), Acta Theriol. Sin., 8 (1988), 152-156. 

[19]

X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan Plateau: Problems overlooked and suggestions for change, Ambio, 33 (2004), 169-171. 

[20]

X. WeiS. LiP. Yang and H. Cheng, Soil erosion and vegetation succession in alpine Kobresia steppe meadow caused by plateau pika-A case study of Nagqu County, Tibet, Chinese Geographical Science, 17 (2007), 75-81. 

[21]

L. WenS. Dong and Y. Li, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), 1-7.  doi: 10.1371/journal.pone.0058432.

[22]

Z. Yang and X. Jiang, The harm of plateau pika on grassland vegetation and its control threshold value, Pratacultural Sci., 19 (2002), 63-65. 

[23]

B. YinJ. Wang and W. Wei, Population reproductive characteristics of plateau pika in alpine meadow ecosystem, Acta Theriol. Sin., 24 (2004), 222-228. 

[24]

Y. ZhangX. Yuan and D. Niu, Response of plateau pika burrow density to vegetation management in an alpine meadow, Maqu County, Gansu, Acta Prataculturae Sin., 25 (2016), 87-94. 

[25]

X. Zhao and X. Zhou, Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station, Ambio, 28 (1999), 642-647. 

[26]

H. ZhouL. Zhou and X. Zhao, Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau, Chin. Sci. Bull., 51 (2006), 320-327.  doi: 10.1007/s11434-006-0320-4.

show all references

References:
[1]

T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring management and restoration, Grassl. Sci., 53 (2007), 1-7.  doi: 10.1111/j.1744-697X.2007.00073.x.

[2] S. Cai and Z. Qian, Introduction of Qualitative Theory of Ordinary Differential Equations, Higher Education Press, Beijing, 1994. 
[3] A. Hastings and L. Gross, Encyclopedia of Theoretical Ecology, University of California Press, Berkeley, 2012. 
[4]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5-60.  doi: 10.4039/entm9745fv.

[5]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.

[6]

C. Lai and A. Smith, Keystone status of plateau pika (Ochotona curzoniae): Effect of control on biodiversity of native birds, Biodivers. Conserv., 12 (2003), 1901-1912. 

[7]

Q. LiJ. Li and Q. Dong, Study on the effect of fencing on Kobrecia parva alpine meadow pasture at different degrading stages in Yangtze and Yellow river headwaters, Pratacultural Sci., 23 (2006), 16-21. 

[8]

Y. LiX. Zhao and G. Cao, Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station, Plateau Meteorol, 23 (2004), 558-567. 

[9]

W. LiuX. WangL. Zhou and H. Zhou, Studies on destruction, prevention and control of plateau pikas in Kobresia pygmaea meadow, Acta Theriol. Sin., 23 (2003), 214-219. 

[10] Z. Ma and Y. Zhou, The Qualitative and Stability Methods of Ordinary Differential Equations, Science Press, Beijing, 2001. 
[11]

J. QuM. Liu and M. Yang, Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan plateau, Eur. J. Wildl. Res., 58 (2012), 269-277. 

[12]

M. L. Rosenzweig and R. H. Macarthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. 

[13]

S. Shen and Y. Chen, Preliminary research on ecology of the plateau pica at Dawu area, Guoluo, Qinghai province, Acta Theriol. Sin., 4 (1984), 107-115. 

[14]

Y. Shi, On the influences of range land vegetation to the density of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 3 (1983), 181-187. 

[15]

A. T. Smith and J. M. Foggin, The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau, Anim. Conserv., 2 (1999), 235-240. 

[16]

J. WangW. Wei and Y. Zhang, The sex ratio of plateau pika's population, Acta Theriol. Sin., 24 (2004), 177-181. 

[17]

X. Wang and K. Dai, Natural longevity of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 9 (1989), 56-62. 

[18]

X. Wang and A. T. Smith, On the natural winter mortality of the plateau pika (Ochotona Curzoniae), Acta Theriol. Sin., 8 (1988), 152-156. 

[19]

X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan Plateau: Problems overlooked and suggestions for change, Ambio, 33 (2004), 169-171. 

[20]

X. WeiS. LiP. Yang and H. Cheng, Soil erosion and vegetation succession in alpine Kobresia steppe meadow caused by plateau pika-A case study of Nagqu County, Tibet, Chinese Geographical Science, 17 (2007), 75-81. 

[21]

L. WenS. Dong and Y. Li, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), 1-7.  doi: 10.1371/journal.pone.0058432.

[22]

Z. Yang and X. Jiang, The harm of plateau pika on grassland vegetation and its control threshold value, Pratacultural Sci., 19 (2002), 63-65. 

[23]

B. YinJ. Wang and W. Wei, Population reproductive characteristics of plateau pika in alpine meadow ecosystem, Acta Theriol. Sin., 24 (2004), 222-228. 

[24]

Y. ZhangX. Yuan and D. Niu, Response of plateau pika burrow density to vegetation management in an alpine meadow, Maqu County, Gansu, Acta Prataculturae Sin., 25 (2016), 87-94. 

[25]

X. Zhao and X. Zhou, Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station, Ambio, 28 (1999), 642-647. 

[26]

H. ZhouL. Zhou and X. Zhao, Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau, Chin. Sci. Bull., 51 (2006), 320-327.  doi: 10.1007/s11434-006-0320-4.

Figure 1.  A bifurcation diagram of Model (1) with $ r_{1} = 0.227 $, $ \alpha = 4000 $, $ \mu = 0.001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $, for $ p $ varying from $ 6 $ to $ 12 $. The solid curves represent stable equilibria, while the dotted curves represent unstable equilibria
Figure 2.  A bifurcation diagram of Model (1) with $ r_{1} = 0.227 $, $ \alpha = 1000 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $ and $ p $ varying from $ 1.2 $ to $ 2.2 $. The solid curves represent stable equilibria or limit cycle, while the dotted curves represent unstable equilibria
Figure 3.  Two solution trajectories of (1) are converging to a stable limit cycle. Parameter values used ere $ r_{1} = 0.227 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $, $ \alpha = 1000 $ and $ p = 2 $; Two sets of initial conditions are $ (3500,1000) $ and $ (1500,1000) $
Figure 4.  Two stable equilibria $ E_{0} $ and $ E_{2} $ coexist. Here $ r_{1} = 0.227 $, $ \alpha = 1000 $, $ p = 1.68 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $
Figure 5.  The outer closed curve $ L $: $ OE_{0}FGHO $ around $ E_{2} $
Table 1.  The default values of parameters in simulations
Parameter Value Reference
$ r_{1} $ $ 0.227\;year^{-1} $ [8]
$ K $ $ 4000\;kg $ [1,8,9,22]
$ q $ $ 0.36\;kg\cdot head^{-1}\cdot year^{-1} $ [23]
$ r_{2} $ $ 0.95\;year^{-1} $ [19,20]
$ p $ $ 1\sim12\;year^{-1} $ [13,14,17,24]
$ \lambda $ $ 0.32256\;kg\cdot head^{-1} $ [10]
Parameter Value Reference
$ r_{1} $ $ 0.227\;year^{-1} $ [8]
$ K $ $ 4000\;kg $ [1,8,9,22]
$ q $ $ 0.36\;kg\cdot head^{-1}\cdot year^{-1} $ [23]
$ r_{2} $ $ 0.95\;year^{-1} $ [19,20]
$ p $ $ 1\sim12\;year^{-1} $ [13,14,17,24]
$ \lambda $ $ 0.32256\;kg\cdot head^{-1} $ [10]
[1]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[2]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[3]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[4]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[5]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[6]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[7]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[8]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[9]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[10]

Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021298

[11]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[12]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081

[13]

Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1811-1825. doi: 10.3934/dcdsb.2020040

[14]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[15]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[16]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[17]

Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292

[18]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132

[19]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[20]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (277)
  • HTML views (498)
  • Cited by (0)

[Back to Top]