September  2019, 24(9): 4755-4782. doi: 10.3934/dcdsb.2019029

Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10, 1040 Wien, Austria

Received  September 2017 Revised  November 2017 Published  September 2019 Early access  February 2019

Fund Project: The authors acknowledge partial support from the Austrian Science Fund (FWF), grants P27352, P30000, F65, and W1245.

The existence of weak solutions and upper bounds for the blow-up time for time-discrete parabolic-elliptic Keller-Segel models for chemotaxis in the two-dimensional whole space are proved. For various time discretizations, including the implicit Euler, BDF, and Runge-Kutta methods, the same bounds for the blow-up time as in the continuous case are derived by discrete versions of the virial argument. The theoretical results are illustrated by numerical simulations using an upwind finite-element method combined with second-order time discretizations.

Citation: Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029
References:
[1]

M. Akhmouch and M. Amine, A time semi-exponentially fitted scheme for chemotaxis-growth models, Calcolo, 54 (2017), 609-641.  doi: 10.1007/s10092-016-0201-4.  Google Scholar

[2]

B. AndreianovM. Bendahmane and M. Saad, Finite volume methods for degenerate model, J. Comput. Appl. Math., 235 (2011), 4015-4031.  doi: 10.1016/j.cam.2011.02.023.  Google Scholar

[3]

M. Bessemoulin-Chatard and A. Jüngel, A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal., 34 (2014), 96-122.  doi: 10.1093/imanum/drs061.  Google Scholar

[4]

A. BlanchetV. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), 691-721.  doi: 10.1137/070683337.  Google Scholar

[5]

A. BlanchetJ. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $ {\mathbb R}^2$, Commun. Pure Appl. Math., 61 (2008), 1449-1481.  doi: 10.1002/cpa.20225.  Google Scholar

[6]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electr. J. Diff. Eqs., 2006 (2006), article 44, 32 pages.  Google Scholar

[7]

C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques, RAIRO Anal. Numér., 12 (1978), 237-245.  doi: 10.1051/m2an/1978120302371.  Google Scholar

[8]

L. Bonaventura and A. Della Rocca, Unconditionally strong stability preserving extensions of the TR-BDF2 method, J. Sci. Comput., 70 (2017), 859-895.  doi: 10.1007/s10915-016-0267-9.  Google Scholar

[9]

C. BuddR. Carretero-González and R. Russell, Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., 202 (2005), 463-487.  doi: 10.1016/j.jcp.2004.07.010.  Google Scholar

[10]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $ {\mathbb R}^2$, Commun. Math. Sci., 6 (2008), 417-447.  doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[11]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomena and global existence for the Keller-Segel model in high dimensions, Commun. Partial Diff. Eqs., 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[12]

J. A. CarrilloH. Ranetbauer and M.-T. Wolfram, Numerical simulation of continuity equations by evolving diffeomorphisms, J. Comput. Phys., 327 (2016), 186-202.  doi: 10.1016/j.jcp.2016.09.040.  Google Scholar

[13]

M. ChapwanyaJ. Lubuma and R. Mickens, Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences, Comput. Math. Appl., 68 (2014), 1071-1082.  doi: 10.1016/j.camwa.2014.04.021.  Google Scholar

[14]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[15]

A. ChertockY. EpshteynH. Hu and A. Kurganov, High-order positivity-preserving hybrid finite-volume finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44 (2018), 327-350.  doi: 10.1007/s10444-017-9545-9.  Google Scholar

[16]

L. CorriasB. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.  doi: 10.1007/s00032-003-0026-x.  Google Scholar

[17]

S. DejakD. EgliP. Lushnikov and I. Sigal, On blowup dynamics in the Keller-Segel model of chemotaxis, Algebra i Analiz, 25 (2013), 47-84.  doi: 10.1090/S1061-0022-2014-01306-4.  Google Scholar

[18]

Y. Epshtyn, Discontinuous Galerkin methods for the chemotaxis and haptotaxis models, J. Comput. Appl. Math., 224 (2009), 168-181.  doi: 10.1016/j.cam.2008.04.030.  Google Scholar

[19]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis, Dyn. Sys., Diff. Eqs. and Appl., AIMS Proceedings, (2015), 409–417. doi: 10.3934/proc.2015.0409.  Google Scholar

[20]

F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457-488.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[21]

R. Garg and S. Spector, On regularity of solutions to Poisson's equation, Comptes Rendus Math., 353 (2015), 819-823.  doi: 10.1016/j.crma.2015.07.001.  Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[23]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys., 135 (2009), 133-151.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[24]

A. Jüngel and J.-P. Milišić, Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations, Numer. Meth. Partial Diff. Eqs., 31 (2015), 1119-1149.  doi: 10.1002/num.21938.  Google Scholar

[25]

A. Jüngel and S. Schuchnigg, A discrete Bakry-Emery method and its application to the porous-medium equation, Discrete Cont. Dyn. Sys., 37 (2017), 5541-5560.  doi: 10.3934/dcds.2017241.  Google Scholar

[26]

A. Jüngel and S. Schuchnigg, Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations, Commun. Math. Sci., 15 (2017), 27-53.  doi: 10.4310/CMS.2017.v15.n1.a2.  Google Scholar

[27]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[28]

D. Ketcheson, Step sizes for strong stability preservation with downwind-biased operators, SIAM J. Numer. Anal., 49 (2011), 1649-1660.  doi: 10.1137/100818674.  Google Scholar

[29]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up in the 2-D Keller-Segel system, J. Evol. Eqs., 8 (2008), 353-378.  doi: 10.1007/s00028-008-0375-6.  Google Scholar

[30]

N. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, Rhode Island, USA, 2008. doi: 10.1090/gsm/096.  Google Scholar

[31]

E. Lieb and M. Loss, Analysis, 2nd edition, Amer. Math. Soc., Providence, USA, 2001. doi: 10.1090/gsm/014.  Google Scholar

[32]

J.-G. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for the 2D Keller-Segel equations, Math. Comput., 87 (2018), 1165-1189.  doi: 10.1090/mcom/3250.  Google Scholar

[33]

T. Nagai and T. Ogawa, Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in $ {\mathbb R}^2$, Funkcialaj Ekvacioj, 59 (2016), 67-112.  doi: 10.1619/fesi.59.67.  Google Scholar

[34]

E. Nakaguchi and A. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems, Hokkaido Math. J., 31 (2002), 385-429.  doi: 10.14492/hokmj/1350911871.  Google Scholar

[35]

C. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[36]

B. Perthame, Transport Equations in Biology, Birkhäuser, Basel, 2007.  Google Scholar

[37]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), 332-365.  doi: 10.1093/imanum/drl018.  Google Scholar

[38]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, B15 (2009), 125–146.  Google Scholar

[39]

N. Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11 (2012), 339-364.  doi: 10.3934/cpaa.2012.11.339.  Google Scholar

[40]

N. Saito and T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72-90.  doi: 10.1016/j.amc.2005.01.037.  Google Scholar

[41]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Meth. Appl. Anal., 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[42]

M. Smiley, A monotone conservative Eulerian-Lagrangian scheme for reaction-diffusion-convection equations modeling chemotaxis, Numer. Meth. Partial Diff. Eqs., 23 (2007), 553-586.  doi: 10.1002/num.20185.  Google Scholar

[43]

M. N. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), 271-290.  doi: 10.1007/BF01389573.  Google Scholar

[44]

R. StrehlA. SokolovD. Kuzmin and S. Turek, A flux-corrected finite element method for chemotaxis problems, Comput. Meth. Appl. Math., 10 (2010), 219-232.  doi: 10.2478/cmam-2010-0013.  Google Scholar

[45]

R. StrehlA. SokolovD. KuzminD. Horstmann and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239 (2013), 290-303.  doi: 10.1016/j.cam.2012.09.041.  Google Scholar

[46]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[47]

J. Valenciano and M. Chaplain, Computing highly accurate solutions of a tumour angiogenesis model, Math. Models Meth. Appl. Sci., 13 (2003), 747-766.  doi: 10.1142/S0218202503002702.  Google Scholar

[48]

R. ZhangJ. ZhuA. Loula and X. Yu, Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model, J. Comput. Appl. Math., 302 (2016), 312-326.  doi: 10.1016/j.cam.2016.02.018.  Google Scholar

[49]

G. Zhou and N. Saito, Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., 135 (2017), 265-311.  doi: 10.1007/s00211-016-0793-2.  Google Scholar

show all references

References:
[1]

M. Akhmouch and M. Amine, A time semi-exponentially fitted scheme for chemotaxis-growth models, Calcolo, 54 (2017), 609-641.  doi: 10.1007/s10092-016-0201-4.  Google Scholar

[2]

B. AndreianovM. Bendahmane and M. Saad, Finite volume methods for degenerate model, J. Comput. Appl. Math., 235 (2011), 4015-4031.  doi: 10.1016/j.cam.2011.02.023.  Google Scholar

[3]

M. Bessemoulin-Chatard and A. Jüngel, A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal., 34 (2014), 96-122.  doi: 10.1093/imanum/drs061.  Google Scholar

[4]

A. BlanchetV. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), 691-721.  doi: 10.1137/070683337.  Google Scholar

[5]

A. BlanchetJ. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $ {\mathbb R}^2$, Commun. Pure Appl. Math., 61 (2008), 1449-1481.  doi: 10.1002/cpa.20225.  Google Scholar

[6]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electr. J. Diff. Eqs., 2006 (2006), article 44, 32 pages.  Google Scholar

[7]

C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques, RAIRO Anal. Numér., 12 (1978), 237-245.  doi: 10.1051/m2an/1978120302371.  Google Scholar

[8]

L. Bonaventura and A. Della Rocca, Unconditionally strong stability preserving extensions of the TR-BDF2 method, J. Sci. Comput., 70 (2017), 859-895.  doi: 10.1007/s10915-016-0267-9.  Google Scholar

[9]

C. BuddR. Carretero-González and R. Russell, Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., 202 (2005), 463-487.  doi: 10.1016/j.jcp.2004.07.010.  Google Scholar

[10]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $ {\mathbb R}^2$, Commun. Math. Sci., 6 (2008), 417-447.  doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[11]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomena and global existence for the Keller-Segel model in high dimensions, Commun. Partial Diff. Eqs., 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[12]

J. A. CarrilloH. Ranetbauer and M.-T. Wolfram, Numerical simulation of continuity equations by evolving diffeomorphisms, J. Comput. Phys., 327 (2016), 186-202.  doi: 10.1016/j.jcp.2016.09.040.  Google Scholar

[13]

M. ChapwanyaJ. Lubuma and R. Mickens, Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences, Comput. Math. Appl., 68 (2014), 1071-1082.  doi: 10.1016/j.camwa.2014.04.021.  Google Scholar

[14]

A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205.  doi: 10.1007/s00211-008-0188-0.  Google Scholar

[15]

A. ChertockY. EpshteynH. Hu and A. Kurganov, High-order positivity-preserving hybrid finite-volume finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44 (2018), 327-350.  doi: 10.1007/s10444-017-9545-9.  Google Scholar

[16]

L. CorriasB. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.  doi: 10.1007/s00032-003-0026-x.  Google Scholar

[17]

S. DejakD. EgliP. Lushnikov and I. Sigal, On blowup dynamics in the Keller-Segel model of chemotaxis, Algebra i Analiz, 25 (2013), 47-84.  doi: 10.1090/S1061-0022-2014-01306-4.  Google Scholar

[18]

Y. Epshtyn, Discontinuous Galerkin methods for the chemotaxis and haptotaxis models, J. Comput. Appl. Math., 224 (2009), 168-181.  doi: 10.1016/j.cam.2008.04.030.  Google Scholar

[19]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis, Dyn. Sys., Diff. Eqs. and Appl., AIMS Proceedings, (2015), 409–417. doi: 10.3934/proc.2015.0409.  Google Scholar

[20]

F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457-488.  doi: 10.1007/s00211-006-0024-3.  Google Scholar

[21]

R. Garg and S. Spector, On regularity of solutions to Poisson's equation, Comptes Rendus Math., 353 (2015), 819-823.  doi: 10.1016/j.crma.2015.07.001.  Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[23]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys., 135 (2009), 133-151.  doi: 10.1007/s10955-009-9717-1.  Google Scholar

[24]

A. Jüngel and J.-P. Milišić, Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations, Numer. Meth. Partial Diff. Eqs., 31 (2015), 1119-1149.  doi: 10.1002/num.21938.  Google Scholar

[25]

A. Jüngel and S. Schuchnigg, A discrete Bakry-Emery method and its application to the porous-medium equation, Discrete Cont. Dyn. Sys., 37 (2017), 5541-5560.  doi: 10.3934/dcds.2017241.  Google Scholar

[26]

A. Jüngel and S. Schuchnigg, Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations, Commun. Math. Sci., 15 (2017), 27-53.  doi: 10.4310/CMS.2017.v15.n1.a2.  Google Scholar

[27]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[28]

D. Ketcheson, Step sizes for strong stability preservation with downwind-biased operators, SIAM J. Numer. Anal., 49 (2011), 1649-1660.  doi: 10.1137/100818674.  Google Scholar

[29]

H. Kozono and Y. Sugiyama, Local existence and finite time blow-up in the 2-D Keller-Segel system, J. Evol. Eqs., 8 (2008), 353-378.  doi: 10.1007/s00028-008-0375-6.  Google Scholar

[30]

N. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, Rhode Island, USA, 2008. doi: 10.1090/gsm/096.  Google Scholar

[31]

E. Lieb and M. Loss, Analysis, 2nd edition, Amer. Math. Soc., Providence, USA, 2001. doi: 10.1090/gsm/014.  Google Scholar

[32]

J.-G. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for the 2D Keller-Segel equations, Math. Comput., 87 (2018), 1165-1189.  doi: 10.1090/mcom/3250.  Google Scholar

[33]

T. Nagai and T. Ogawa, Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in $ {\mathbb R}^2$, Funkcialaj Ekvacioj, 59 (2016), 67-112.  doi: 10.1619/fesi.59.67.  Google Scholar

[34]

E. Nakaguchi and A. Yagi, Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems, Hokkaido Math. J., 31 (2002), 385-429.  doi: 10.14492/hokmj/1350911871.  Google Scholar

[35]

C. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[36]

B. Perthame, Transport Equations in Biology, Birkhäuser, Basel, 2007.  Google Scholar

[37]

N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), 332-365.  doi: 10.1093/imanum/drl018.  Google Scholar

[38]

N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, B15 (2009), 125–146.  Google Scholar

[39]

N. Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11 (2012), 339-364.  doi: 10.3934/cpaa.2012.11.339.  Google Scholar

[40]

N. Saito and T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72-90.  doi: 10.1016/j.amc.2005.01.037.  Google Scholar

[41]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Meth. Appl. Anal., 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[42]

M. Smiley, A monotone conservative Eulerian-Lagrangian scheme for reaction-diffusion-convection equations modeling chemotaxis, Numer. Meth. Partial Diff. Eqs., 23 (2007), 553-586.  doi: 10.1002/num.20185.  Google Scholar

[43]

M. N. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), 271-290.  doi: 10.1007/BF01389573.  Google Scholar

[44]

R. StrehlA. SokolovD. Kuzmin and S. Turek, A flux-corrected finite element method for chemotaxis problems, Comput. Meth. Appl. Math., 10 (2010), 219-232.  doi: 10.2478/cmam-2010-0013.  Google Scholar

[45]

R. StrehlA. SokolovD. KuzminD. Horstmann and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239 (2013), 290-303.  doi: 10.1016/j.cam.2012.09.041.  Google Scholar

[46]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[47]

J. Valenciano and M. Chaplain, Computing highly accurate solutions of a tumour angiogenesis model, Math. Models Meth. Appl. Sci., 13 (2003), 747-766.  doi: 10.1142/S0218202503002702.  Google Scholar

[48]

R. ZhangJ. ZhuA. Loula and X. Yu, Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model, J. Comput. Appl. Math., 302 (2016), 312-326.  doi: 10.1016/j.cam.2016.02.018.  Google Scholar

[49]

G. Zhou and N. Saito, Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., 135 (2017), 265-311.  doi: 10.1007/s00211-016-0793-2.  Google Scholar

Figure 1.  Cell density computed from the BDF-2 scheme at times $ t = 0 $ (top left), $ t = 0.005 $ (top right), $ t = 0.007 $ (bottom left), $ t = 0.02 $ (bottom right)
Figure 2.  Cell density computed from the BDF-2 scheme at times $ t = 0 $ (top left), $ t = 0.005 $ (top right), $ t = 0.02 $ (bottom left), $ t = 0.1001 $ (bottom right)
Figure 3.  $ L^p $ error $ e_p $ for $ p = 1,2,4,\infty $ at time $ T = 0.01 $ for various time step sizes $ \tau_k = \tau $ (left: BDF-2 discretization; right: midpoint discretization)
Figure 4.  Cell density at time step $ k = 0 $ (left) and $ k = k_{\rm max} = 44 $. The mesh size is $ h = 0.02 $
Figure 5.  The residuum $ R_k $ for time steps 1 to 81 (left) and time steps 30 to 81 (right) versus time steps k
Figure 6.  $ L^\infty $ norm $ \|n_k\|_{L^\infty(\Omega)} $ (left) and second moment $ I_k $ (right) versus time. The vertical line marks the upper bound $ k_{\rm max} $ defined in (18)
Figure 7.  Cell density computed from the BDF-2 scheme with a coarse mesh at times $ t = 0 $ (top left), $ t = 0.006 $ (top right), $ t = 0.021 $ (bottom left) and the $ L^1 $ norm of $ n_k $ (bottom right)
[1]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[2]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[3]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[4]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[5]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[6]

Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021151

[7]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[8]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[9]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021093

[10]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[11]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[12]

Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229

[13]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[14]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[15]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[16]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[17]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[18]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[19]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[20]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (140)
  • HTML views (450)
  • Cited by (0)

Other articles
by authors

[Back to Top]