[1]
|
S. J. Altschuler, Singularities for the curve shortening flow for space curves, Journal of Differential Geometry, 34 (1991), 491-514.
doi: 10.4310/jdg/1214447218.
|
[2]
|
S. J. Altschuler and M. A. Grayson, Shortening space curves and flow through singularities, Journal of Differential Geometry, 35 (1992), 283-298.
doi: 10.4310/jdg/1214448076.
|
[3]
|
L. Ambrosio and H. M. Soner, A level set approach to the evolution of surfaces of any codimension, Journal of Differential Geometry, 43 (1996), 693-737.
doi: 10.4310/jdg/1214458529.
|
[4]
|
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 3 (2008), 509-523.
|
[5]
|
P. Burchard, L. T. Cheng, B. Merriman and S. Osher, Motion of curves in three spatial dimensions using a level set approach, Journal of Computational Physics, 170 (2001), 720-741.
doi: 10.1006/jcph.2001.6758.
|
[6]
|
J. Christiansen, Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change, Numerische Mathematik, 14 (1970), 317-324.
doi: 10.1007/BF02165587.
|
[7]
|
K. Corrales, Non existence of type Ⅱ singularities for embedded and unknotted space curves, preprint, arXiv: 1605.03100v1, 2016.
|
[8]
|
G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow, Mathematical Models and Methods in Applied Sciences, 4 (1994), 589-606.
doi: 10.1142/S0218202594000339.
|
[9]
|
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
|
[10]
|
M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, Journal of Differential Geometry, 23 (1986), 69-96.
doi: 10.4310/jdg/1214439902.
|
[11]
|
M. Grayson, The heat equation shrinks embedded plane curves to round points, Journal of Differential Geometry, 26 (1987), 285-314.
doi: 10.4310/jdg/1214441371.
|
[12]
|
S. He, Distance comparison principle and Grayson type theorem in the three dimensional curve shortening flow, preprint, arXiv: 1209.5146v1, 2012.
|
[13]
|
M. Holodniok, A. Klíč, M. Kubíček and M. Marek, Methods of Analysis of Nonlinear Dynamical Models, Academia Praha, 1986.
|
[14]
|
G. Huisken, Flow by mean curvature of convex surfaces into spheres, Journal of Differential Geometry, 20 (1984), 237-266.
doi: 10.4310/jdg/1214438998.
|
[15]
|
G. Khan, A condition ensuring spatial curves develop type-Ⅱ singularities under curve shortening flow, preprint, arXiv: 1209.4072v3, 2015.
|
[16]
|
M. Kimura, Geometry of hypersurfaces and moving hypersurfaces in $\mathbb{R}^m$ for the study of moving boundary problems, Topics on Partial Differential Equations, Jindřich Nečas Center for Mathematical Modeling, Lecture notes, 4 (2008), 39–93.
|
[17]
|
M. Kolář, M. Beneš and D. Ševčovič, Area preserving geodesic curvature driven flow of closed curves on a surface, Discrete and Continuous Dynamical Systems - Series B, 22 (2017), 3671-3689.
doi: 10.3934/dcdsb.2017148.
|
[18]
|
K. Mikula, Image processing with partial differential equations, Nato Science Series, 75 (2002), 283-322.
|
[19]
|
T. Mura, Micromechanics of Defects in Solids, Springer Netherlands, 1987.
|
[20]
|
S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2.
|
[21]
|
J. R. Rice and M. Mu, An experimental performance analysis for the rate of convergence of collocation on general domains, Numerical Methods for Partial Differential Equations, 5 (1989), 45-52.
doi: 10.1002/num.1690050105.
|
[22]
|
J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1996.
|
[23]
|
A. Visintin, Models of Phase Transitions, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4078-5.
|
[24]
|
Y. Y. Yang and X. X. Jiao, Curve shortening flow in arbitrary dimensional Euclidian space, Acta Mathematica Sinica, 21 (2005), 715-722.
doi: 10.1007/s10114-004-0426-z.
|