-
Previous Article
Verification estimates for the construction of Lyapunov functions using meshfree collocation
- DCDS-B Home
- This Issue
-
Next Article
Effects of nonlocal dispersal and spatial heterogeneity on total biomass
The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients
1. | College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China |
2. | School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China |
3. | Department of Applied Mathematics, Donghua University, Shanghai 201620, China |
4. | Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, U.K |
In this paper, we study the averaging principle for multivalued SDEs with jumps and non-Lipschitz coefficients. By the Bihari's inequality and the properties of the concave function, we prove that the solution of averaged multivalued SDE with jumps converges to that of the standard one in the sense of mean square and also in probability. Finally, two examples are presented to illustrate our theory.
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() |
[2] |
D. D. Bainov and S. D. Milusheva,
Justification of the averaging method for a system of functional differential equations with variable structure and impulses, Appl. Math. and Optimization, 16 (1987), 19-36.
doi: 10.1007/BF01442183. |
[3] |
F. Bernardin,
Multivalued stochastic differential equations: Convergence of a numerical scheme, Set-Valued Analysis, 11 (2003), 393-415.
doi: 10.1023/A:1025656814701. |
[4] |
I. Bihari,
A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 71-94.
doi: 10.1007/BF02022967. |
[5] |
E. Cépa,
Equations differentielles stochastiques multivoques, in: Seminaire de Probabilites, Lecture Notes in Mathematics, Springer, Berlin, 46 (1995), 86-107.
doi: 10.1007/BFb0094202. |
[6] |
E. Cépa,
Probleme de Skorohod multivoque, Ann. Probab., 26 (1998), 500-532.
doi: 10.1214/aop/1022855642. |
[7] |
M. Federson and J. G. Mesquita,
Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses, Journal of Differential Equations, 255 (2013), 3098-3126.
doi: 10.1016/j.jde.2013.07.026. |
[8] |
D. Givon,
Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems, SIAM J. Multiscale Model, Simul., 6 (2007), 577-594.
doi: 10.1137/060673345. |
[9] |
J. Golec and G. Ladde,
Averaging principle and systems of singularly perturbed stochastic differential equations, J. Math. Phys., 31 (1990), 1116-1123.
doi: 10.1063/1.528792. |
[10] |
R. Guo and B. Pei,
Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson Point Processes, Stochastic Analysis and Applications, 36 (2018), 751-766.
doi: 10.1080/07362994.2018.1461567. |
[11] |
J. K. Hale,
Averaging methods for differential equations with retarded arguments with a small parameter, J. Differential Equations, 2 (1996), 57-73.
doi: 10.1016/0022-0396(66)90063-5. |
[12] |
R. Z. Khasminskii,
On the principle of averaging the Itô stochastic differential equations, Kibernet, 4 (1968), 260-279.
|
[13] |
R. Z. Khasminskii and G. Yin,
On averaging principles: An asymptotic expansion approach, SIAM J. Math. Anal., 35 (2004), 1534-1560.
doi: 10.1137/S0036141002403973. |
[14] |
V. G. Kolomiets and A. I. Melnikov,
Averaging of stochastic systems of integral-differential equations with Poisson noise, Ukr. Math. J., 43 (1991), 242-246.
doi: 10.1007/BF01060515. |
[15] |
P. Krée,
Diffusion for multivalued stochastic differential equations, J. Funct. Anal., 49 (1982), 73-90.
doi: 10.1016/0022-1236(82)90086-6. |
[16] |
N. M. Krylov and N. N. Bogolyubov, Les proprietes ergodiques des suites des probabilites en chaine, C. R. Math. Acad. Sci., 204 (1937), 1454-1546. Google Scholar |
[17] |
D. Lépingle and C. Marois,
Equations différentielles stochastiques multivoques unidimensionnelles, Séminaire de Probabilités XXI, Springer, Berlin, Heidelberg, 1247 (1987), 520-533.
doi: 10.1007/BFb0077653. |
[18] |
Z. Liang,
Existence and pathwise uniqueness of solutions for stochastic differential equations with respect to martingales in the plane, Stochastic Processes and their Applications, 83 (1999), 303-317.
doi: 10.1016/S0304-4149(99)00040-X. |
[19] |
W. Liu and M. Stephan,
Yosida approximations for multivalued stochastic partial differential equations driven by Lévy noise on a Gelfand triple, Journal of Mathematical Analysis and Applications, 410 (2014), 158-178.
doi: 10.1016/j.jmaa.2013.08.016. |
[20] |
C. Marois,
Equations differentielles stochastiques multivoques discontinues avec frontiere mobile, Stochastics., 30 (1990), 105-121.
doi: 10.1080/17442509008833636. |
[21] |
L. Maticiuc, A. Rascanu and L. Slominski, Multivalued monotone stochastic differential equations with jumps, Stochastics and Dynamics, 17 (2017), 1750018, 25 pp.
doi: 10.1142/S0219493717500186. |
[22] |
K. Matthies,
Time-averaging under fast periodic forcing of parabolic partial differential equations: Exponential estimates, J. Differ. Equ., 174 (2011), 133-180.
doi: 10.1006/jdeq.2000.3934. |
[23] |
L. Ngoran and N. Z. Modeste,
Averaging principle for multivalued stochastic differential equations, Random Operators and Stochastic Equations, 9 (2001), 399-407.
doi: 10.1515/rose.2001.9.4.399. |
[24] |
P. H. Protter, Stochastic Integration and Differential Equations, second ed., Applications of Mathematics, Springer-Verlag, Berlin., 2004. |
[25] |
J. Ren and S. Xu,
A transfer principle for multivalued stochastic differential equations, Journal of Functional Analysis, 256 (2009), 2780-2814.
doi: 10.1016/j.jfa.2008.09.016. |
[26] |
Y. Ren, J. Wang and L. Hu,
Multi-valued stochastic differential equations driven by G-Brownian motion and related stochastic control problems, International Journal of Control., 90 (2017), 1132-1154.
doi: 10.1080/00207179.2016.1204560. |
[27] |
J. Ren and J. Wu,
Multi-valued Stochastic Differential Equations Driven by Poisson Point Processes, Stochastic Analysis with Financial Applications, Springer, 65 (2011), 191-205.
doi: 10.1007/978-3-0348-0097-6_13. |
[28] |
A. Y. Veretennikov,
On the averaging principle for systems of stochastic differential equations, Math. USSR-Sb., 69 (1991), 271-284.
doi: 10.1070/SM1991v069n01ABEH001237. |
[29] |
V. M. Volosov,
Averaging in systems of ordinary differential equations, Russian. Math. Surveys, 17 (1962), 1-126.
|
[30] |
J. Wu,
Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto Journal of Mathematics, 51 (2011), 535-559.
doi: 10.1215/21562261-1299891. |
[31] |
Y. Xu, J. Q. Duan and W. Xu,
An averaging principle for stochastic dynamical systems with Lévy noise, Physica D., 240 (2011), 1395-1401.
doi: 10.1016/j.physd.2011.06.001. |
[32] |
Y. Xu, B. Pei and J. L. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics and Dynamics, 17 (2017), 1750013, 16 pp.
doi: 10.1142/S0219493717500137. |
[33] |
Y. Xu, B. Pei and R. Guo,
Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete Contin. Dyn. Syst., Ser. B., 20 (2015), 2257-2267.
doi: 10.3934/dcdsb.2015.20.2257. |
[34] |
J. Xu and J. Liu,
An averaging principle for multivalued stochastic differential equations, Stoch. Anal. Appl., 32 (2014), 962-974.
doi: 10.1080/07362994.2014.959594. |
[35] |
Y. Xu, B. Pei and Y. Li,
Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise, Mathematical Methods in the Applied Sciences, 38 (2015), 2120-2131.
doi: 10.1002/mma.3208. |
[36] |
Y. Xu, B. Pei and G. Guo,
Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, Applied Mathematics and Computation, 263 (2015), 398-409.
doi: 10.1016/j.amc.2015.04.070. |
[37] |
G. Yin and K. M. Ramachandran,
A differential delay equation with wideband noise perturbation, Stochastic Processes and Their Applications, 35 (1990), 231-249.
doi: 10.1016/0304-4149(90)90004-C. |
[38] |
A. Zalinescu,
Stochastic variational inequalities with jumps, Stochastic Processes and their Applications, 124 (2014), 785-811.
doi: 10.1016/j.spa.2013.09.005. |
[39] |
H. Zhang,
Strong convergence rate for multivalued stochastic differential equations via stochastic theta method, Stochastics, 90 (2018), 762-781.
doi: 10.1080/17442508.2017.1416117. |
[40] |
X. Zhang,
Skorohod problem and multivalued stochastic evolution equations in Banach spaces, Bulletin des sciences mathematiques, 131 (2007), 175-217.
doi: 10.1016/j.bulsci.2006.05.009. |
show all references
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() |
[2] |
D. D. Bainov and S. D. Milusheva,
Justification of the averaging method for a system of functional differential equations with variable structure and impulses, Appl. Math. and Optimization, 16 (1987), 19-36.
doi: 10.1007/BF01442183. |
[3] |
F. Bernardin,
Multivalued stochastic differential equations: Convergence of a numerical scheme, Set-Valued Analysis, 11 (2003), 393-415.
doi: 10.1023/A:1025656814701. |
[4] |
I. Bihari,
A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 71-94.
doi: 10.1007/BF02022967. |
[5] |
E. Cépa,
Equations differentielles stochastiques multivoques, in: Seminaire de Probabilites, Lecture Notes in Mathematics, Springer, Berlin, 46 (1995), 86-107.
doi: 10.1007/BFb0094202. |
[6] |
E. Cépa,
Probleme de Skorohod multivoque, Ann. Probab., 26 (1998), 500-532.
doi: 10.1214/aop/1022855642. |
[7] |
M. Federson and J. G. Mesquita,
Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses, Journal of Differential Equations, 255 (2013), 3098-3126.
doi: 10.1016/j.jde.2013.07.026. |
[8] |
D. Givon,
Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems, SIAM J. Multiscale Model, Simul., 6 (2007), 577-594.
doi: 10.1137/060673345. |
[9] |
J. Golec and G. Ladde,
Averaging principle and systems of singularly perturbed stochastic differential equations, J. Math. Phys., 31 (1990), 1116-1123.
doi: 10.1063/1.528792. |
[10] |
R. Guo and B. Pei,
Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson Point Processes, Stochastic Analysis and Applications, 36 (2018), 751-766.
doi: 10.1080/07362994.2018.1461567. |
[11] |
J. K. Hale,
Averaging methods for differential equations with retarded arguments with a small parameter, J. Differential Equations, 2 (1996), 57-73.
doi: 10.1016/0022-0396(66)90063-5. |
[12] |
R. Z. Khasminskii,
On the principle of averaging the Itô stochastic differential equations, Kibernet, 4 (1968), 260-279.
|
[13] |
R. Z. Khasminskii and G. Yin,
On averaging principles: An asymptotic expansion approach, SIAM J. Math. Anal., 35 (2004), 1534-1560.
doi: 10.1137/S0036141002403973. |
[14] |
V. G. Kolomiets and A. I. Melnikov,
Averaging of stochastic systems of integral-differential equations with Poisson noise, Ukr. Math. J., 43 (1991), 242-246.
doi: 10.1007/BF01060515. |
[15] |
P. Krée,
Diffusion for multivalued stochastic differential equations, J. Funct. Anal., 49 (1982), 73-90.
doi: 10.1016/0022-1236(82)90086-6. |
[16] |
N. M. Krylov and N. N. Bogolyubov, Les proprietes ergodiques des suites des probabilites en chaine, C. R. Math. Acad. Sci., 204 (1937), 1454-1546. Google Scholar |
[17] |
D. Lépingle and C. Marois,
Equations différentielles stochastiques multivoques unidimensionnelles, Séminaire de Probabilités XXI, Springer, Berlin, Heidelberg, 1247 (1987), 520-533.
doi: 10.1007/BFb0077653. |
[18] |
Z. Liang,
Existence and pathwise uniqueness of solutions for stochastic differential equations with respect to martingales in the plane, Stochastic Processes and their Applications, 83 (1999), 303-317.
doi: 10.1016/S0304-4149(99)00040-X. |
[19] |
W. Liu and M. Stephan,
Yosida approximations for multivalued stochastic partial differential equations driven by Lévy noise on a Gelfand triple, Journal of Mathematical Analysis and Applications, 410 (2014), 158-178.
doi: 10.1016/j.jmaa.2013.08.016. |
[20] |
C. Marois,
Equations differentielles stochastiques multivoques discontinues avec frontiere mobile, Stochastics., 30 (1990), 105-121.
doi: 10.1080/17442509008833636. |
[21] |
L. Maticiuc, A. Rascanu and L. Slominski, Multivalued monotone stochastic differential equations with jumps, Stochastics and Dynamics, 17 (2017), 1750018, 25 pp.
doi: 10.1142/S0219493717500186. |
[22] |
K. Matthies,
Time-averaging under fast periodic forcing of parabolic partial differential equations: Exponential estimates, J. Differ. Equ., 174 (2011), 133-180.
doi: 10.1006/jdeq.2000.3934. |
[23] |
L. Ngoran and N. Z. Modeste,
Averaging principle for multivalued stochastic differential equations, Random Operators and Stochastic Equations, 9 (2001), 399-407.
doi: 10.1515/rose.2001.9.4.399. |
[24] |
P. H. Protter, Stochastic Integration and Differential Equations, second ed., Applications of Mathematics, Springer-Verlag, Berlin., 2004. |
[25] |
J. Ren and S. Xu,
A transfer principle for multivalued stochastic differential equations, Journal of Functional Analysis, 256 (2009), 2780-2814.
doi: 10.1016/j.jfa.2008.09.016. |
[26] |
Y. Ren, J. Wang and L. Hu,
Multi-valued stochastic differential equations driven by G-Brownian motion and related stochastic control problems, International Journal of Control., 90 (2017), 1132-1154.
doi: 10.1080/00207179.2016.1204560. |
[27] |
J. Ren and J. Wu,
Multi-valued Stochastic Differential Equations Driven by Poisson Point Processes, Stochastic Analysis with Financial Applications, Springer, 65 (2011), 191-205.
doi: 10.1007/978-3-0348-0097-6_13. |
[28] |
A. Y. Veretennikov,
On the averaging principle for systems of stochastic differential equations, Math. USSR-Sb., 69 (1991), 271-284.
doi: 10.1070/SM1991v069n01ABEH001237. |
[29] |
V. M. Volosov,
Averaging in systems of ordinary differential equations, Russian. Math. Surveys, 17 (1962), 1-126.
|
[30] |
J. Wu,
Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto Journal of Mathematics, 51 (2011), 535-559.
doi: 10.1215/21562261-1299891. |
[31] |
Y. Xu, J. Q. Duan and W. Xu,
An averaging principle for stochastic dynamical systems with Lévy noise, Physica D., 240 (2011), 1395-1401.
doi: 10.1016/j.physd.2011.06.001. |
[32] |
Y. Xu, B. Pei and J. L. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics and Dynamics, 17 (2017), 1750013, 16 pp.
doi: 10.1142/S0219493717500137. |
[33] |
Y. Xu, B. Pei and R. Guo,
Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete Contin. Dyn. Syst., Ser. B., 20 (2015), 2257-2267.
doi: 10.3934/dcdsb.2015.20.2257. |
[34] |
J. Xu and J. Liu,
An averaging principle for multivalued stochastic differential equations, Stoch. Anal. Appl., 32 (2014), 962-974.
doi: 10.1080/07362994.2014.959594. |
[35] |
Y. Xu, B. Pei and Y. Li,
Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise, Mathematical Methods in the Applied Sciences, 38 (2015), 2120-2131.
doi: 10.1002/mma.3208. |
[36] |
Y. Xu, B. Pei and G. Guo,
Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, Applied Mathematics and Computation, 263 (2015), 398-409.
doi: 10.1016/j.amc.2015.04.070. |
[37] |
G. Yin and K. M. Ramachandran,
A differential delay equation with wideband noise perturbation, Stochastic Processes and Their Applications, 35 (1990), 231-249.
doi: 10.1016/0304-4149(90)90004-C. |
[38] |
A. Zalinescu,
Stochastic variational inequalities with jumps, Stochastic Processes and their Applications, 124 (2014), 785-811.
doi: 10.1016/j.spa.2013.09.005. |
[39] |
H. Zhang,
Strong convergence rate for multivalued stochastic differential equations via stochastic theta method, Stochastics, 90 (2018), 762-781.
doi: 10.1080/17442508.2017.1416117. |
[40] |
X. Zhang,
Skorohod problem and multivalued stochastic evolution equations in Banach spaces, Bulletin des sciences mathematiques, 131 (2007), 175-217.
doi: 10.1016/j.bulsci.2006.05.009. |
[1] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[2] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[3] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
[4] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[5] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[6] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[7] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[8] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[9] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[10] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[11] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[12] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[13] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[14] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[15] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[16] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[17] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[18] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[19] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[20] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]