
-
Previous Article
Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces
- DCDS-B Home
- This Issue
-
Next Article
optimal investment and dividend policy in an insurance company: A varied bound for dividend rates
Superfluidity phase transitions for liquid $ ^{4} $He system
1. | School of Medical Informatics and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, China |
2. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
The main objective of this paper is to investigate the superfluidity phase transition theory-modeling and analysis-for liquid $ ^{4} $He system. Based on the new Gibbs free energy and the potential-descending principle proposed recently in [
References:
[1] |
J. F. Allen and A. D. Misener, Flow of liquid Helium Ⅱ, Nature, 141 (1938), 75.
doi: 10.1038/141075a0. |
[2] |
A. Berti and V. Berti,
A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium, Z. Angew. Math. Phys., 64 (2013), 1387-1397.
doi: 10.1007/s00033-012-0280-2. |
[3] |
A. Berti, V. Berti and I. Bochicchio,
Global and exponential attractors for a Ginzburg-Landau model of superfluidity, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 247-271.
doi: 10.3934/dcdss.2011.4.247. |
[4] |
A. Berti, V. Berti and I. Bochicchio, Asymptotic behavior of Ginzburg-Landau equations of superfluidity, Communications to SIMAI Congress, 3 (2009), 12pp. |
[5] |
V. Berti and M. Fabrizio, Well-posedness for a Ginzburg-Landau model in superfluidity, in New Trends in Fluid and Solid Models, World Scientific, (2009), 1–9.
doi: 10.1142/9789814293228_0001. |
[6] |
V. Berti and M. Fabrizio,
Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459.
doi: 10.1002/mma.981. |
[7] |
M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari,
Theoretical estimates of the critical exponents of the superfluid transition in $^4$He by lattice methods, Phys. Rev. B, 74 (2006), 2952-2961.
|
[8] |
A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzsber. Preuss. Akad., 3 (2006).
doi: 10.1002/3527608958.ch27. |
[9] |
M. Fabrizio,
A Ginzburg-Landau model for the phase transition in Helium Ⅱ, Z. Angew. Math. Phys., 61 (2010), 329-340.
doi: 10.1007/s00033-009-0011-5. |
[10] |
M. Fabrizio and M. S. Mongiovì,
Phase transition in liquid $^4$He by a mean field model, J. Therm. Stresses, 36 (2013), 135-151.
|
[11] |
H. A. Gersch and J. M. Tanner,
Solid-superfluid transition in $^4$He at absolute zero, Phys. Rev., 139 (1965), 1769-1782.
|
[12] |
V. L. Ginzburg and L. D. Landau,
On the theory of superconductivity, Zh. Eksp. Teor. Fiz., 20 (1950), 1064-1082.
doi: 10.1007/978-3-540-68008-6_4. |
[13] |
Z. B. Hou and L. M. Li,
Global attractor of the liquid Helium-4 system in $H^{k}$ space, Appl. Mech. Mater., 444/445 (2014), 731-737.
doi: 10.4028/www.scientific.net/AMM.444-445.731. |
[14] |
P. Kapitza, Viscosity of liquid Helium below the $\lambda$-point, Nature, 141 (1938), 74. |
[15] |
S. Koh, Shear viscosity of liquid helium 4 above the lambda point, Physics, 2008. |
[16] |
L. D. Landau, Theory of superfluidity of Helium-Ⅱ, Zh. Eksp. Teor. Fiz., 11 (1941). |
[17] |
T. Lindenau, M. L. Ristig, J. W. Clark and K. A. Gernoth,
Bose-Einstein condensation and the $\lambda$-transition in liquid Helium, J. Low Temp. Phys., 129 (2002), 143-170.
|
[18] |
R. K. Liu, T. Ma, S. H. Wang and J. Y. Yang, Thermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B, (2018) (to appear).
doi: 10.3934/dcdsb.2018214. |
[19] |
F. London,
The $\lambda$-phenomenon of liquid Helium and the Bose-Einstein degeneracy, Nature, 141 (1938), 643-644.
|
[20] |
T. Ma, R. K. Liu and J. Y. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory(in Chinese), Science Press, Beijing, 2017. |
[21] |
T. Ma and S. H. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, 2005.
doi: 10.1142/5827. |
[22] |
T. Ma and S. H. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[23] |
T. Ma and S. H. Wang, Dynamic model and phase transitions for liquid helium, J. Math. Phys., 49 (2008), 073304, 18 pp.
doi: 10.1063/1.2957943. |
[24] |
T. Ma and S. H. Wang, Phase transition and separation for mixture of liquid He-3 and He-4, in Lev Davidovich Landau and his Impact on Contemporary Theoretical Physics, Nova Science Publishers Inc; UK ed., (2010), 107–119. |
[25] |
T. Ma and S. H. Wang,
Dynamic law of physical motion and potential-descending principle, J. Math. Study, 50 (2017), 215-241.
doi: 10.4208/jms.v50n3.17.02. |
[26] |
V. N. Minasyan and V. N. Samoilov,
The condition of existence of the Bose-Einstein condensation in the superfluid liquid helium, Phys. Lett. A, 374 (2010), 2792-2797.
doi: 10.1016/j.physleta.2010.04.072. |
[27] |
M. S. Mongiovì and L. Saluto,
Effects of heat flux on $\lambda$-transition in liquid $^4$He, Meccanica, 49 (2014), 2125-2137.
doi: 10.1007/s11012-014-9922-0. |
[28] |
O. Penrose and L. Onsager,
Bose-Einstein condensation and liquid Helium, Phys. Rev., 104 (1956), 576-584.
doi: 10.4324/9780429494116-14. |
[29] |
J. K. Perron, M. O. Kimball, K. P. Mooney and F. M. Gasparini, Critical behavior of coupled $^4$He regions near the superfluid transition, Phys. Rev. B, 87 (2013), 094507. |
[30] |
L. Tisza, Transport phenomena in Helium Ⅱ, Nature, 141 (1938), 913.
doi: 10.1038/141913a0. |
show all references
References:
[1] |
J. F. Allen and A. D. Misener, Flow of liquid Helium Ⅱ, Nature, 141 (1938), 75.
doi: 10.1038/141075a0. |
[2] |
A. Berti and V. Berti,
A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium, Z. Angew. Math. Phys., 64 (2013), 1387-1397.
doi: 10.1007/s00033-012-0280-2. |
[3] |
A. Berti, V. Berti and I. Bochicchio,
Global and exponential attractors for a Ginzburg-Landau model of superfluidity, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 247-271.
doi: 10.3934/dcdss.2011.4.247. |
[4] |
A. Berti, V. Berti and I. Bochicchio, Asymptotic behavior of Ginzburg-Landau equations of superfluidity, Communications to SIMAI Congress, 3 (2009), 12pp. |
[5] |
V. Berti and M. Fabrizio, Well-posedness for a Ginzburg-Landau model in superfluidity, in New Trends in Fluid and Solid Models, World Scientific, (2009), 1–9.
doi: 10.1142/9789814293228_0001. |
[6] |
V. Berti and M. Fabrizio,
Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459.
doi: 10.1002/mma.981. |
[7] |
M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari,
Theoretical estimates of the critical exponents of the superfluid transition in $^4$He by lattice methods, Phys. Rev. B, 74 (2006), 2952-2961.
|
[8] |
A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzsber. Preuss. Akad., 3 (2006).
doi: 10.1002/3527608958.ch27. |
[9] |
M. Fabrizio,
A Ginzburg-Landau model for the phase transition in Helium Ⅱ, Z. Angew. Math. Phys., 61 (2010), 329-340.
doi: 10.1007/s00033-009-0011-5. |
[10] |
M. Fabrizio and M. S. Mongiovì,
Phase transition in liquid $^4$He by a mean field model, J. Therm. Stresses, 36 (2013), 135-151.
|
[11] |
H. A. Gersch and J. M. Tanner,
Solid-superfluid transition in $^4$He at absolute zero, Phys. Rev., 139 (1965), 1769-1782.
|
[12] |
V. L. Ginzburg and L. D. Landau,
On the theory of superconductivity, Zh. Eksp. Teor. Fiz., 20 (1950), 1064-1082.
doi: 10.1007/978-3-540-68008-6_4. |
[13] |
Z. B. Hou and L. M. Li,
Global attractor of the liquid Helium-4 system in $H^{k}$ space, Appl. Mech. Mater., 444/445 (2014), 731-737.
doi: 10.4028/www.scientific.net/AMM.444-445.731. |
[14] |
P. Kapitza, Viscosity of liquid Helium below the $\lambda$-point, Nature, 141 (1938), 74. |
[15] |
S. Koh, Shear viscosity of liquid helium 4 above the lambda point, Physics, 2008. |
[16] |
L. D. Landau, Theory of superfluidity of Helium-Ⅱ, Zh. Eksp. Teor. Fiz., 11 (1941). |
[17] |
T. Lindenau, M. L. Ristig, J. W. Clark and K. A. Gernoth,
Bose-Einstein condensation and the $\lambda$-transition in liquid Helium, J. Low Temp. Phys., 129 (2002), 143-170.
|
[18] |
R. K. Liu, T. Ma, S. H. Wang and J. Y. Yang, Thermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B, (2018) (to appear).
doi: 10.3934/dcdsb.2018214. |
[19] |
F. London,
The $\lambda$-phenomenon of liquid Helium and the Bose-Einstein degeneracy, Nature, 141 (1938), 643-644.
|
[20] |
T. Ma, R. K. Liu and J. Y. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory(in Chinese), Science Press, Beijing, 2017. |
[21] |
T. Ma and S. H. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, 2005.
doi: 10.1142/5827. |
[22] |
T. Ma and S. H. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[23] |
T. Ma and S. H. Wang, Dynamic model and phase transitions for liquid helium, J. Math. Phys., 49 (2008), 073304, 18 pp.
doi: 10.1063/1.2957943. |
[24] |
T. Ma and S. H. Wang, Phase transition and separation for mixture of liquid He-3 and He-4, in Lev Davidovich Landau and his Impact on Contemporary Theoretical Physics, Nova Science Publishers Inc; UK ed., (2010), 107–119. |
[25] |
T. Ma and S. H. Wang,
Dynamic law of physical motion and potential-descending principle, J. Math. Study, 50 (2017), 215-241.
doi: 10.4208/jms.v50n3.17.02. |
[26] |
V. N. Minasyan and V. N. Samoilov,
The condition of existence of the Bose-Einstein condensation in the superfluid liquid helium, Phys. Lett. A, 374 (2010), 2792-2797.
doi: 10.1016/j.physleta.2010.04.072. |
[27] |
M. S. Mongiovì and L. Saluto,
Effects of heat flux on $\lambda$-transition in liquid $^4$He, Meccanica, 49 (2014), 2125-2137.
doi: 10.1007/s11012-014-9922-0. |
[28] |
O. Penrose and L. Onsager,
Bose-Einstein condensation and liquid Helium, Phys. Rev., 104 (1956), 576-584.
doi: 10.4324/9780429494116-14. |
[29] |
J. K. Perron, M. O. Kimball, K. P. Mooney and F. M. Gasparini, Critical behavior of coupled $^4$He regions near the superfluid transition, Phys. Rev. B, 87 (2013), 094507. |
[30] |
L. Tisza, Transport phenomena in Helium Ⅱ, Nature, 141 (1938), 913.
doi: 10.1038/141913a0. |


[1] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[2] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[3] |
Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094 |
[4] |
Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022017 |
[5] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[6] |
Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135 |
[7] |
Antonio Cossidente, Francesco Pavese, Leo Storme. Optimal subspace codes in $ {{\rm{PG}}}(4,q) $. Advances in Mathematics of Communications, 2019, 13 (3) : 393-404. doi: 10.3934/amc.2019025 |
[8] |
Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011 |
[9] |
Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038 |
[10] |
Murat Şahİn, Hayrullah Özİmamoğlu. Additive Toeplitz codes over $ \mathbb{F}_{4} $. Advances in Mathematics of Communications, 2020, 14 (2) : 379-395. doi: 10.3934/amc.2020026 |
[11] |
Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021019 |
[12] |
Jianshi Yan. On minimal 4-folds of general type with $ p_g \geq 2 $. Electronic Research Archive, 2021, 29 (5) : 3309-3321. doi: 10.3934/era.2021040 |
[13] |
Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2022, 16 (1) : 1-15. doi: 10.3934/amc.2020096 |
[14] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121 |
[15] |
Vladimir Edemskiy, Sofia Koltsova. Estimate of 4-adic complexity of unified quaternary sequences of length $ 2p $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022048 |
[16] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[17] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[18] |
Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2221-2252. doi: 10.3934/dcdss.2019143 |
[19] |
Jorge Garcia Villeda. A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $. Electronic Research Archive, 2021, 29 (6) : 3853-3865. doi: 10.3934/era.2021065 |
[20] |
Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1285-1300. doi: 10.3934/dcdsb.2021090 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]