\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions

  • * Corresponding author: Stefanie Sonner

    * Corresponding author: Stefanie Sonner 

Our research was supported by the ASEAN-European Academic University Network (ASEA-UNINET), and partially supported by NAWI Graz, IGDK 1754, and NAFOSTED project 101.01-2017.302

Abstract Full Text(HTML) Related Papers Cited by
  • The stabilisation by noise on the boundary of the Chafee-Infante equation with dynamical boundary conditions subject to a multiplicative Itô noise is studied. In particular, we show that there exists a finite range of noise intensities that imply the exponential stability of the trivial steady state. This differs from previous works on the stabilisation by noise of parabolic PDEs, where the noise acts inside the domain and stabilisation typically occurs for an infinite range of noise intensities. To the best of our knowledge, this is the first result on the stabilisation of PDEs by boundary noise.

    Mathematics Subject Classification: Primary: 34H15, 35K57; Secondary: 35P15, 35R60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003.
    [2] E. Alòs and S. Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 125-154.  doi: 10.1016/S0246-0203(01)01097-4.
    [3] E. Alòs and S. Bonaccorsi, Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 465-481.  doi: 10.1142/S0219025702000948.
    [4] V. Barbu, Stabilization of Navier–Stokes Flows, Springer, London, 2011. doi: 10.1007/978-0-85729-043-4.
    [5] T. Caraballo, Recent results on stabilization of PDEs with noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70. 
    [6] T. CaraballoH. CrauelJ. Langa and J. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proceedings of the American Mathematical Society, 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5.
    [7] T. Caraballo and P. E. Kloeden, Stabilization of evolution equations by noise, Interdiscip. Math. Sci., 8 (2010), World Sci. Publ., Hackensack, NJ, 43–66. doi: 10.1142/9789814277266_0003.
    [8] T. CaraballoP. E. Kloeden and B. Schmalfuß, Stabilization of stationary solutions of evolution equations by noise, Discrete Conts. Dyn. Systems, Series B., 6 (2006), 1199-1212.  doi: 10.3934/dcdsb.2006.6.1199.
    [9] T. CaraballoK. Liu and X. R. Mao, On stabilization of partial differential equations by noise, Nagoya Math. J., 161 (2001), 155-170.  doi: 10.1017/S0027763000022169.
    [10] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Reprint of the second edition, Oxford University Press, New York, 1988.
    [11] R. Czaja and P. Marín-Rubio, Pullback exponential attractors for parabolic equations with dynamical boundary conditions, Taiwanese J. Math., 21 (2017), 819-839.  doi: 10.11650/tjm/7862.
    [12] A. DebusscheM. Fuhrman and G. Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control, ESAIM: Control, Optimisation and Calculus of Variations, 13 (2007), 178-205.  doi: 10.1051/cocv:2007001.
    [13] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.  doi: 10.1080/03605309308820976.
    [14] A. Filinovskiy, On the eigenvalues of a Robin problem with a large parameter, Mathematica Bohemica, 139 (2014), 341-352. 
    [15] A. Filinovskiy, On the Asymptotic Behavior of the First Eigenvalue of Robin Problem With Large Parameter, J. Elliptic Para. Equations, 1 (2015), 123-135.  doi: 10.1007/BF03377372.
    [16] L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16194-0.
    [17] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. 
    [18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Lecture Notes in Mathematics, 1981.
    [19] H. Kovařík, On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions, J. Geom. Anal., 24 (2014), 1509-1525.  doi: 10.1007/s12220-012-9383-4.
    [20] A. A. Kwiecinska, Stabilization of partial differential equations by noise, Stoch. Proc. & Appl., 79 (1999), 179-184.  doi: 10.1016/S0304-4149(98)00080-5.
    [21] J.-L. Lions, Quelques Méthodes de Résolution des Probl'emes aux Limites non Linéaires, (French), Dunod; Gauthier-Villars, Paris, 1969.
    [22] K. Liu, On stability for a class of semilinear stochastic evolution equations, Stochastic Process. Appl., 70 (1997), 219-241.  doi: 10.1016/S0304-4149(97)00062-8.
    [23] K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Diff. Eqs., 93 (1991), 364-394.  doi: 10.1016/0022-0396(91)90017-4.
    [24] X. R. Mao, Stochastic stabilization and destabilization, Control Letters, 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7.
    [25] I. Munteanu, Stabilization of stochastic parabolic equations with boundary-noise and boundary-control, J. Math. Anal. Appl., 449 (2017), 829-842.  doi: 10.1016/j.jmaa.2016.12.047.
    [26] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastic Process. Appl., 3 (1979), 127-167.  doi: 10.1080/17442507908833142.
    [27] M. Sofonea and A. Matei, Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems, Vol. 18, Springer Science & Business Media, 2009.
    [28] R. B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations, Ann. Probab., 22 (1994), 2071-2121.  doi: 10.1214/aop/1176988495.
  • 加载中
SHARE

Article Metrics

HTML views(851) PDF downloads(213) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return