-
Previous Article
Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics
- DCDS-B Home
- This Issue
-
Next Article
Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux
Effects of the noise level on nonlinear stochastic fractional heat equations
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
We consider the stochastic fractional heat equation $\partial_{t}u=\triangle^{\alpha/2}u+\lambda\sigma(u)\dot{w}$ on $[0,L]$ with Dirichlet boundary conditions, where $\dot{w}$ denotes the space-time white noise. For any $\lambda>0$, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ grows at most exponentially. If $\lambda$ is small, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ is exponentially stable. At last, we obtain the noise excitation index of $p$th energy of $u(t,x)$ is $\frac{2\alpha}{\alpha-1}$.
References:
[1] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[2] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[3] |
K. Bogdan and T. Jakubowski,
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.
doi: 10.1007/s00220-006-0178-y. |
[4] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
doi: 10.4171/JEMS/231. |
[5] |
Z.-Q. Chen, M. M. Meerschaert and E. Nane,
Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.
doi: 10.1016/j.jmaa.2012.04.032. |
[6] |
M. Foondun and M. Joseph,
Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.
doi: 10.1016/j.spa.2014.04.015. |
[7] |
M. Foondun and D. Khoshnevisan,
Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.
doi: 10.1214/EJP.v14-614. |
[8] |
M. Foondun and E. Nualart,
On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.
|
[9] |
M. Foondun, K. Tian and W. Liu,
On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.
doi: 10.1007/s10959-016-0684-6. |
[10] |
P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010.
doi: 10.1017/CBO9780511845079. |
[11] |
A. M. Garsia, E. Rodemich and H. Rumsey Jr,
A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.
doi: 10.1512/iumj.1971.20.20046. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981. |
[13] |
T. Jakubowski and G. Serafin,
Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.
doi: 10.1016/j.na.2015.10.016. |
[14] |
D. Khoshnevisan and K. Kim,
Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.
doi: 10.1090/S0002-9939-2015-12517-8. |
[15] |
D. Khoshnevisan and K. Kim,
Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.
doi: 10.1214/14-AOP925. |
[16] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() ![]() |
[17] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
![]() ![]() |
[18] |
J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439.
doi: 10.1007/BFb0074920. |
[19] |
F. Wang and X. Zhang,
Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.
doi: 10.1515/forum-2012-0074. |
[20] |
B. Xie,
Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.
doi: 10.1016/j.spa.2015.10.014. |
show all references
References:
[1] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[2] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[3] |
K. Bogdan and T. Jakubowski,
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.
doi: 10.1007/s00220-006-0178-y. |
[4] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
doi: 10.4171/JEMS/231. |
[5] |
Z.-Q. Chen, M. M. Meerschaert and E. Nane,
Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.
doi: 10.1016/j.jmaa.2012.04.032. |
[6] |
M. Foondun and M. Joseph,
Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.
doi: 10.1016/j.spa.2014.04.015. |
[7] |
M. Foondun and D. Khoshnevisan,
Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.
doi: 10.1214/EJP.v14-614. |
[8] |
M. Foondun and E. Nualart,
On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.
|
[9] |
M. Foondun, K. Tian and W. Liu,
On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.
doi: 10.1007/s10959-016-0684-6. |
[10] |
P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010.
doi: 10.1017/CBO9780511845079. |
[11] |
A. M. Garsia, E. Rodemich and H. Rumsey Jr,
A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.
doi: 10.1512/iumj.1971.20.20046. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981. |
[13] |
T. Jakubowski and G. Serafin,
Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.
doi: 10.1016/j.na.2015.10.016. |
[14] |
D. Khoshnevisan and K. Kim,
Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.
doi: 10.1090/S0002-9939-2015-12517-8. |
[15] |
D. Khoshnevisan and K. Kim,
Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.
doi: 10.1214/14-AOP925. |
[16] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() ![]() |
[17] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
![]() ![]() |
[18] |
J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439.
doi: 10.1007/BFb0074920. |
[19] |
F. Wang and X. Zhang,
Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.
doi: 10.1515/forum-2012-0074. |
[20] |
B. Xie,
Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.
doi: 10.1016/j.spa.2015.10.014. |
[1] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050 |
[2] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[3] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058 |
[4] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 |
[5] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[6] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428 |
[7] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[8] |
Ricardo Almeida, M. Luísa Morgado. Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 519-534. doi: 10.3934/dcdss.2021149 |
[9] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443 |
[10] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[11] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[12] |
Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148 |
[13] |
Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027 |
[14] |
Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109 |
[15] |
Fausto Ferrari, Michele Miranda Jr, Diego Pallara, Andrea Pinamonti, Yannick Sire. Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 477-491. doi: 10.3934/dcdss.2018026 |
[16] |
Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525 |
[17] |
Umberto Biccari, Mahamadi Warma, Enrique Zuazua. Controllability of the one-dimensional fractional heat equation under positivity constraints. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1949-1978. doi: 10.3934/cpaa.2020086 |
[18] |
Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160 |
[19] |
François Bolley, Arnaud Guillin, Xinyu Wang. Non ultracontractive heat kernel bounds by Lyapunov conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 857-870. doi: 10.3934/dcds.2015.35.857 |
[20] |
Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]