-
Previous Article
Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics
- DCDS-B Home
- This Issue
-
Next Article
Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux
Effects of the noise level on nonlinear stochastic fractional heat equations
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
We consider the stochastic fractional heat equation $\partial_{t}u=\triangle^{\alpha/2}u+\lambda\sigma(u)\dot{w}$ on $[0,L]$ with Dirichlet boundary conditions, where $\dot{w}$ denotes the space-time white noise. For any $\lambda>0$, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ grows at most exponentially. If $\lambda$ is small, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ is exponentially stable. At last, we obtain the noise excitation index of $p$th energy of $u(t,x)$ is $\frac{2\alpha}{\alpha-1}$.
References:
[1] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[2] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[3] |
K. Bogdan and T. Jakubowski,
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.
doi: 10.1007/s00220-006-0178-y. |
[4] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
doi: 10.4171/JEMS/231. |
[5] |
Z.-Q. Chen, M. M. Meerschaert and E. Nane,
Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.
doi: 10.1016/j.jmaa.2012.04.032. |
[6] |
M. Foondun and M. Joseph,
Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.
doi: 10.1016/j.spa.2014.04.015. |
[7] |
M. Foondun and D. Khoshnevisan,
Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.
doi: 10.1214/EJP.v14-614. |
[8] |
M. Foondun and E. Nualart,
On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.
|
[9] |
M. Foondun, K. Tian and W. Liu,
On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.
doi: 10.1007/s10959-016-0684-6. |
[10] |
P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010.
doi: 10.1017/CBO9780511845079. |
[11] |
A. M. Garsia, E. Rodemich and H. Rumsey Jr,
A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.
doi: 10.1512/iumj.1971.20.20046. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981. |
[13] |
T. Jakubowski and G. Serafin,
Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.
doi: 10.1016/j.na.2015.10.016. |
[14] |
D. Khoshnevisan and K. Kim,
Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.
doi: 10.1090/S0002-9939-2015-12517-8. |
[15] |
D. Khoshnevisan and K. Kim,
Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.
doi: 10.1214/14-AOP925. |
[16] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[17] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
![]() |
[18] |
J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439.
doi: 10.1007/BFb0074920. |
[19] |
F. Wang and X. Zhang,
Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.
doi: 10.1515/forum-2012-0074. |
[20] |
B. Xie,
Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.
doi: 10.1016/j.spa.2015.10.014. |
show all references
References:
[1] |
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[2] |
K. Bogdan, T. Grzywny and M. Ryznar,
Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.
doi: 10.1214/10-AOP532. |
[3] |
K. Bogdan and T. Jakubowski,
Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.
doi: 10.1007/s00220-006-0178-y. |
[4] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
doi: 10.4171/JEMS/231. |
[5] |
Z.-Q. Chen, M. M. Meerschaert and E. Nane,
Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.
doi: 10.1016/j.jmaa.2012.04.032. |
[6] |
M. Foondun and M. Joseph,
Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.
doi: 10.1016/j.spa.2014.04.015. |
[7] |
M. Foondun and D. Khoshnevisan,
Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.
doi: 10.1214/EJP.v14-614. |
[8] |
M. Foondun and E. Nualart,
On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.
|
[9] |
M. Foondun, K. Tian and W. Liu,
On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.
doi: 10.1007/s10959-016-0684-6. |
[10] |
P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010.
doi: 10.1017/CBO9780511845079. |
[11] |
A. M. Garsia, E. Rodemich and H. Rumsey Jr,
A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.
doi: 10.1512/iumj.1971.20.20046. |
[12] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981. |
[13] |
T. Jakubowski and G. Serafin,
Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.
doi: 10.1016/j.na.2015.10.016. |
[14] |
D. Khoshnevisan and K. Kim,
Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.
doi: 10.1090/S0002-9939-2015-12517-8. |
[15] |
D. Khoshnevisan and K. Kim,
Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.
doi: 10.1214/14-AOP925. |
[16] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[17] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
![]() |
[18] |
J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439.
doi: 10.1007/BFb0074920. |
[19] |
F. Wang and X. Zhang,
Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.
doi: 10.1515/forum-2012-0074. |
[20] |
B. Xie,
Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.
doi: 10.1016/j.spa.2015.10.014. |
[1] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[2] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[5] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[6] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[7] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[8] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[9] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[10] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[11] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[12] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[13] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[14] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[15] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[16] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[17] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[18] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[19] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[20] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]