• Previous Article
    Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition
  • DCDS-B Home
  • This Issue
  • Next Article
    Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics
October  2019, 24(10): 5481-5502. doi: 10.3934/dcdsb.2019067

Simulation of a simple particle system interacting through hitting times

University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK, OX2 6GG

* Corresponding author: Vadim Kaushansky

The frst author gratefully acknowledges support from the Economic and Social Research Council and Bank of America Merrill Lynch.

Received  June 2018 Published  October 2019 Early access  April 2019

We develop an Euler-type particle method for the simulation of a McKean–Vlasov equation arising from a mean-field model with positive feedback from hitting a boundary. Under assumptions on the parameters which ensure differentiable solutions, we establish convergence of order $ 1/2 $ in the time step. Moreover, we give a modification of the scheme using Brownian bridges and local mesh refinement, which improves the order to $ 1 $. We confirm our theoretical results with numerical tests and empirically investigate cases with blow-up.

Citation: Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067
References:
[1]

F. Antonelli and A. Kohatsu-Higa, Rate of convergence of a particle method to the solution of the McKean–Vlasov equation, The Annals of Applied Probability, 12 (2002), 423-476.  doi: 10.1214/aoap/1026915611.

[2]

S. AsmussenP. Glynn and J. Pitman, Discretization error in simulation of one-dimensional reflecting Brownian motion, The Annals of Applied Probability, 5 (1995), 875-896.  doi: 10.1214/aoap/1177004597.

[3]

K. Borovkov and A. Novikov, Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process, Journal of Applied Probability, 42 (2005), 82-92.  doi: 10.1239/jap/1110381372.

[4]

M. Bossy and D. Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, 66 (1997), 157-192.  doi: 10.1090/S0025-5718-97-00776-X.

[5]

M. J. Cáceres, J. A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, The Journal of Mathematical Neuroscience, 1 (2011), Art. 7, 33 pp. doi: 10.1186/2190-8567-1-7.

[6]

J. A. CarrilloM. d. M. GonzálezM. P. Gualdani and M. E. Schonbek, Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience, Communications in Partial Differential Equations, 38 (2013), 385-409.  doi: 10.1080/03605302.2012.747536.

[7]

F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean–Vlasov type, The Annals of Applied Probability, 25 (2015), 2096-2133.  doi: 10.1214/14-AAP1044.

[8]

F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, 125 (2015), 2451-2492.  doi: 10.1016/j.spa.2015.01.007.

[9]

G. Dos Reis, G. Smith and P. Tankov, Importance sampling for McKean-Vlasov SDEs, 2018, arXiv: 1803.09320.

[10]

T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun guide, Pafnuty Publ.

[11]

P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53, Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2004.

[12]

B. Hambly, S. Ledger and A. Sojmark, A McKean–Vlasov equation with positive feedback and blow-ups, arXiv: 1801.07703.

[13]

A. Lipton, Modern monetary circuit theory, stability of interconnected banking network, and balance sheet optimization for individual banks, International Journal of Theoretical and Applied Finance, 19 (2016), 1650034, 57 pp. doi: 10.1142/S0219024916500345.

[14]

S. Nadtochiy and M. Shkolnikov, Particle systems with singular interaction through hitting times: Application in systemic risk modeling, The Annals of Applied Probability, 29 (2019), 89-129.  doi: 10.1214/18-AAP1403.

[15]

L. Ricketson, A multilevel Monte Carlo method for a class of McKean–Vlasov processes, arXiv: 1508.02299.

[16]

L. Szpruch, S. Tan and A. Tse, Iterative particle approximation for McKean–Vlasov SDEs with application to Multilevel Monte Carlo estimation, arXiv: 1706.00907.

show all references

References:
[1]

F. Antonelli and A. Kohatsu-Higa, Rate of convergence of a particle method to the solution of the McKean–Vlasov equation, The Annals of Applied Probability, 12 (2002), 423-476.  doi: 10.1214/aoap/1026915611.

[2]

S. AsmussenP. Glynn and J. Pitman, Discretization error in simulation of one-dimensional reflecting Brownian motion, The Annals of Applied Probability, 5 (1995), 875-896.  doi: 10.1214/aoap/1177004597.

[3]

K. Borovkov and A. Novikov, Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process, Journal of Applied Probability, 42 (2005), 82-92.  doi: 10.1239/jap/1110381372.

[4]

M. Bossy and D. Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, 66 (1997), 157-192.  doi: 10.1090/S0025-5718-97-00776-X.

[5]

M. J. Cáceres, J. A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, The Journal of Mathematical Neuroscience, 1 (2011), Art. 7, 33 pp. doi: 10.1186/2190-8567-1-7.

[6]

J. A. CarrilloM. d. M. GonzálezM. P. Gualdani and M. E. Schonbek, Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience, Communications in Partial Differential Equations, 38 (2013), 385-409.  doi: 10.1080/03605302.2012.747536.

[7]

F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean–Vlasov type, The Annals of Applied Probability, 25 (2015), 2096-2133.  doi: 10.1214/14-AAP1044.

[8]

F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, 125 (2015), 2451-2492.  doi: 10.1016/j.spa.2015.01.007.

[9]

G. Dos Reis, G. Smith and P. Tankov, Importance sampling for McKean-Vlasov SDEs, 2018, arXiv: 1803.09320.

[10]

T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun guide, Pafnuty Publ.

[11]

P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53, Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2004.

[12]

B. Hambly, S. Ledger and A. Sojmark, A McKean–Vlasov equation with positive feedback and blow-ups, arXiv: 1801.07703.

[13]

A. Lipton, Modern monetary circuit theory, stability of interconnected banking network, and balance sheet optimization for individual banks, International Journal of Theoretical and Applied Finance, 19 (2016), 1650034, 57 pp. doi: 10.1142/S0219024916500345.

[14]

S. Nadtochiy and M. Shkolnikov, Particle systems with singular interaction through hitting times: Application in systemic risk modeling, The Annals of Applied Probability, 29 (2019), 89-129.  doi: 10.1214/18-AAP1403.

[15]

L. Ricketson, A multilevel Monte Carlo method for a class of McKean–Vlasov processes, arXiv: 1508.02299.

[16]

L. Szpruch, S. Tan and A. Tse, Iterative particle approximation for McKean–Vlasov SDEs with application to Multilevel Monte Carlo estimation, arXiv: 1706.00907.

Figure 1.  (a) $ L_t $ for different $ \alpha $ near the jump; (b) distribution of $ Y_T $ for $ Y_T > 0 $ before and after the jump. Fitted by kernel density estimation with normal kernel for $ N = 10^7 $
Figure 8.  Convergence rate for $ d_1(L_t, \tilde{L}_t) $, $ d_2(L_t, \tilde{L}_t) $, $ d_3(L_t, \tilde{L}_t) $ for (a) Algorithm 1, (b) Algorithm 2
Figure 2.  Error of the loss process at $t=T$ for $\frac{1}{Y_0} \sim \exp(1)$ : %depending on time, (a) for increasing number $n$ of timesteps; (b) for increasing number $N$ of samples, %with $\frac{1}{Y_0} \sim \exp(1)$ both for Algorithms 1 and 2.
Figure 3.  (a) $ L_t $ and (b) $ L'_t $ for different values of $ \alpha $
Figure 4.  Error of the loss process at $ t = T $ for $ {{Y}_{0}}\tilde{\ }\text{Gammadistr}(1+\beta ,1/2) $: (a) for increasing number $ n $ of timesteps; (b) for increasing number $ N $ of samples, both for Algorithms 1 and 2
Figure 5.  (a) $ L_t $ and (b) $ L'_t $ for different values of $ \alpha $
Figure 6.  (a) Loss process computed using Algorithm 1 for different $ n $; (b) error as a function of $ t $
Figure 7.  Convergence rate: at (a) $ T = 0.001 $, (b) $ T = 0.008 $
[1]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[2]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[3]

Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1667-1679. doi: 10.3934/dcds.2020336

[4]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic and Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[5]

Huyên Pham. Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 7-. doi: 10.1186/s41546-016-0008-x

[6]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[7]

Michael Herty, Torsten Trimborn, Giuseppe Visconti. Mean-field and kinetic descriptions of neural differential equations. Foundations of Data Science, 2022, 4 (2) : 271-298. doi: 10.3934/fods.2022007

[8]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[9]

Xia Chen, Tuoc Phan. Free energy in a mean field of Brownian particles. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 747-769. doi: 10.3934/dcds.2019031

[10]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[11]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[12]

Xun Li, Jingrui Sun, Jiongmin Yong. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2-. doi: 10.1186/s41546-016-0002-3

[13]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[14]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[15]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006

[16]

Hélène Hibon, Ying Hu, Shanjian Tang. Mean-field type quadratic BSDEs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022009

[17]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[18]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[19]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[20]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021074

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (161)
  • HTML views (388)
  • Cited by (0)

Other articles
by authors

[Back to Top]