
-
Previous Article
Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition
- DCDS-B Home
- This Issue
-
Next Article
Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics
Simulation of a simple particle system interacting through hitting times
University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK, OX2 6GG |
We develop an Euler-type particle method for the simulation of a McKean–Vlasov equation arising from a mean-field model with positive feedback from hitting a boundary. Under assumptions on the parameters which ensure differentiable solutions, we establish convergence of order $ 1/2 $ in the time step. Moreover, we give a modification of the scheme using Brownian bridges and local mesh refinement, which improves the order to $ 1 $. We confirm our theoretical results with numerical tests and empirically investigate cases with blow-up.
References:
[1] |
F. Antonelli and A. Kohatsu-Higa,
Rate of convergence of a particle method to the solution of the McKean–Vlasov equation, The Annals of Applied Probability, 12 (2002), 423-476.
doi: 10.1214/aoap/1026915611. |
[2] |
S. Asmussen, P. Glynn and J. Pitman,
Discretization error in simulation of one-dimensional reflecting Brownian motion, The Annals of Applied Probability, 5 (1995), 875-896.
doi: 10.1214/aoap/1177004597. |
[3] |
K. Borovkov and A. Novikov,
Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process, Journal of Applied Probability, 42 (2005), 82-92.
doi: 10.1239/jap/1110381372. |
[4] |
M. Bossy and D. Talay,
A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, 66 (1997), 157-192.
doi: 10.1090/S0025-5718-97-00776-X. |
[5] |
M. J. Cáceres, J. A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, The Journal of Mathematical Neuroscience, 1 (2011), Art. 7, 33 pp.
doi: 10.1186/2190-8567-1-7. |
[6] |
J. A. Carrillo, M. d. M. González, M. P. Gualdani and M. E. Schonbek,
Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience, Communications in Partial Differential Equations, 38 (2013), 385-409.
doi: 10.1080/03605302.2012.747536. |
[7] |
F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré,
Global solvability of a networked integrate-and-fire model of McKean–Vlasov type, The Annals of Applied Probability, 25 (2015), 2096-2133.
doi: 10.1214/14-AAP1044. |
[8] |
F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré,
Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, 125 (2015), 2451-2492.
doi: 10.1016/j.spa.2015.01.007. |
[9] |
G. Dos Reis, G. Smith and P. Tankov, Importance sampling for McKean-Vlasov SDEs, 2018, arXiv: 1803.09320. Google Scholar |
[10] |
T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun guide, Pafnuty Publ. Google Scholar |
[11] |
P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53, Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2004. |
[12] |
B. Hambly, S. Ledger and A. Sojmark, A McKean–Vlasov equation with positive feedback and blow-ups, arXiv: 1801.07703. Google Scholar |
[13] |
A. Lipton, Modern monetary circuit theory, stability of interconnected banking network, and balance sheet optimization for individual banks, International Journal of Theoretical and Applied Finance, 19 (2016), 1650034, 57 pp.
doi: 10.1142/S0219024916500345. |
[14] |
S. Nadtochiy and M. Shkolnikov,
Particle systems with singular interaction through hitting times: Application in systemic risk modeling, The Annals of Applied Probability, 29 (2019), 89-129.
doi: 10.1214/18-AAP1403. |
[15] |
L. Ricketson, A multilevel Monte Carlo method for a class of McKean–Vlasov processes, arXiv: 1508.02299. Google Scholar |
[16] |
L. Szpruch, S. Tan and A. Tse, Iterative particle approximation for McKean–Vlasov SDEs with application to Multilevel Monte Carlo estimation, arXiv: 1706.00907. Google Scholar |
show all references
References:
[1] |
F. Antonelli and A. Kohatsu-Higa,
Rate of convergence of a particle method to the solution of the McKean–Vlasov equation, The Annals of Applied Probability, 12 (2002), 423-476.
doi: 10.1214/aoap/1026915611. |
[2] |
S. Asmussen, P. Glynn and J. Pitman,
Discretization error in simulation of one-dimensional reflecting Brownian motion, The Annals of Applied Probability, 5 (1995), 875-896.
doi: 10.1214/aoap/1177004597. |
[3] |
K. Borovkov and A. Novikov,
Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process, Journal of Applied Probability, 42 (2005), 82-92.
doi: 10.1239/jap/1110381372. |
[4] |
M. Bossy and D. Talay,
A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, 66 (1997), 157-192.
doi: 10.1090/S0025-5718-97-00776-X. |
[5] |
M. J. Cáceres, J. A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, The Journal of Mathematical Neuroscience, 1 (2011), Art. 7, 33 pp.
doi: 10.1186/2190-8567-1-7. |
[6] |
J. A. Carrillo, M. d. M. González, M. P. Gualdani and M. E. Schonbek,
Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience, Communications in Partial Differential Equations, 38 (2013), 385-409.
doi: 10.1080/03605302.2012.747536. |
[7] |
F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré,
Global solvability of a networked integrate-and-fire model of McKean–Vlasov type, The Annals of Applied Probability, 25 (2015), 2096-2133.
doi: 10.1214/14-AAP1044. |
[8] |
F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré,
Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Processes and their Applications, 125 (2015), 2451-2492.
doi: 10.1016/j.spa.2015.01.007. |
[9] |
G. Dos Reis, G. Smith and P. Tankov, Importance sampling for McKean-Vlasov SDEs, 2018, arXiv: 1803.09320. Google Scholar |
[10] |
T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun guide, Pafnuty Publ. Google Scholar |
[11] |
P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53, Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2004. |
[12] |
B. Hambly, S. Ledger and A. Sojmark, A McKean–Vlasov equation with positive feedback and blow-ups, arXiv: 1801.07703. Google Scholar |
[13] |
A. Lipton, Modern monetary circuit theory, stability of interconnected banking network, and balance sheet optimization for individual banks, International Journal of Theoretical and Applied Finance, 19 (2016), 1650034, 57 pp.
doi: 10.1142/S0219024916500345. |
[14] |
S. Nadtochiy and M. Shkolnikov,
Particle systems with singular interaction through hitting times: Application in systemic risk modeling, The Annals of Applied Probability, 29 (2019), 89-129.
doi: 10.1214/18-AAP1403. |
[15] |
L. Ricketson, A multilevel Monte Carlo method for a class of McKean–Vlasov processes, arXiv: 1508.02299. Google Scholar |
[16] |
L. Szpruch, S. Tan and A. Tse, Iterative particle approximation for McKean–Vlasov SDEs with application to Multilevel Monte Carlo estimation, arXiv: 1706.00907. Google Scholar |





[1] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[2] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[5] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[6] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[7] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[8] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[9] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[10] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[11] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[12] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[13] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[14] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[15] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[16] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[19] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]