-
Previous Article
Fully decoupled schemes for the coupled Schrödinger-KdV system
- DCDS-B Home
- This Issue
-
Next Article
Simulation of a simple particle system interacting through hitting times
Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
2. | Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China |
In this paper, we consider the low Mach number limit of the full compressible MHD equations in a 3-D bounded domain with Dirichlet boundary condition for velocity field, Neumann boundary condition for temperature and perfectly conducting boundary condition for magnetic field. First, the uniform estimates in the Mach number for the strong solutions are obtained in a short time interval, provided that the initial density and temperature are close to the constant states. Then, we prove the solutions of the full compressible MHD equations converge to the isentropic incompressible MHD equations as the Mach number tends to zero.
References:
[1] |
T. Alazard,
Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.
doi: 10.1007/s00205-005-0393-2. |
[2] |
J. P. Bourguignon and H. Brezis,
Remarks on the Euler equation, J. Functional Analysis, 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[3] |
W. Q. Cui, Y. B. Ou and D. D. Ren,
Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263-288.
doi: 10.1016/j.jmaa.2015.02.049. |
[4] |
B. Desjardins, E. Grenier, P. L. Lions and N. Masmoudi,
Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.
doi: 10.1016/S0021-7824(99)00032-X. |
[5] |
C. S. Dou, S. Jiang and Q. C. Ju,
Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.
doi: 10.1007/s00033-013-0311-7. |
[6] |
C. S. Dou, S. Jiang and Y. B. Ou,
Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379-398.
doi: 10.1016/j.jde.2014.09.017. |
[7] |
C. S. Dou and Q. C. Ju,
Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci., 12 (2014), 661-679.
doi: 10.4310/CMS.2014.v12.n4.a3. |
[8] |
J. S. Fan, F. C. Li and G. Nakamura, Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015,387–394.
doi: 10.3934/proc.2015.0387. |
[9] |
J. S. Fan, H. J. Gao and B. L. Guo,
Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient, Math. Methods Appl. Sci., 34 (2011), 2181-2188.
doi: 10.1002/mma.1515. |
[10] |
E. Feireisl and A. Novotny,
Inviscid incompressible limits of the full Navier-Stokes-Fourier system, Comm. Math. Phys., 321 (2013), 605-628.
doi: 10.1007/s00220-013-1691-4. |
[11] |
E. Feireisl and A. Novotny,
The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 186 (2007), 77-107.
doi: 10.1007/s00205-007-0066-4. |
[12] |
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[13] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. Ⅰ. Linearized Steady Problems, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8. |
[14] |
X. P. Hu and D. H. Wang,
Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAMJ. Math. Anal., 41 (2009), 1272-1294.
doi: 10.1137/080723983. |
[15] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.
doi: 10.1137/100785168. |
[16] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.
doi: 10.1007/s00220-010-0992-0. |
[17] |
S. Jiang, Q. C. Ju and F. C. Li,
Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.
doi: 10.1088/0951-7715/25/5/1351. |
[18] |
S. Jiang, Q. C. Ju, F. C. Li and Z. P. Xing,
Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.
doi: 10.1016/j.aim.2014.03.022. |
[19] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.
doi: 10.1137/15M102842X. |
[20] |
S. Jiang and Y. B. Ou,
Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl., 96 (2011), 1-28.
doi: 10.1016/j.matpur.2011.01.004. |
[21] |
F. C. Li, Y. M. Mu and D. H. Wang,
Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 10 (2017), 741-784.
doi: 10.3934/krm.2017030. |
[22] |
Y. P. Li,
Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.
doi: 10.1016/j.jde.2011.10.002. |
[23] |
Y. P. Li and W. A. Yong,
The Zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chin. Ann. Math. Ser. B, 36 (2015), 1043-1054.
doi: 10.1007/s11401-015-0918-4. |
[24] |
J. G. Liu and R. Pego,
Stable discretization of magnetohydrodynamics in bounded domains, Commun. Math. Sci., 8 (2010), 234-251.
doi: 10.4310/CMS.2010.v8.n1.a12. |
[25] |
G. Métivier and S. Schchet,
The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.
doi: 10.1007/PL00004241. |
[26] |
Y. B. Ou,
Low Mach number limit of viscous polytropic fluid flows, J. Differential Equations, 251 (2011), 2037-2065.
doi: 10.1016/j.jde.2011.07.009. |
[27] |
D. D. Ren and Y. B. Ou, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition, Z. Angew. Math. Phys., 67 (2016), Art. 103, 27 pp.
doi: 10.1007/s00033-016-0698-z. |
[28] |
W. Rusin,
On the inviscid limit for the solutions of two-dimensional incompressible Navier-Stokes equations with slip-type boundary conditions, Nonlinearity, 19 (2006), 1349-1363.
doi: 10.1088/0951-7715/19/6/007. |
[29] |
A. Valli,
Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607-647.
|
[30] |
A. Valli and W. M. Zajaczkowski,
Navier-stokes for compressible fluid: Global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), 259-296.
doi: 10.1007/BF01206939. |
[31] |
S. Wang and Z. L. Xu,
Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain, Nonlinear Anal., 105 (2014), 102-119.
doi: 10.1016/j.na.2014.01.008. |
[32] |
Y. L. Xiao and Z. P. Xin,
On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.
doi: 10.1002/cpa.20187. |
show all references
References:
[1] |
T. Alazard,
Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.
doi: 10.1007/s00205-005-0393-2. |
[2] |
J. P. Bourguignon and H. Brezis,
Remarks on the Euler equation, J. Functional Analysis, 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[3] |
W. Q. Cui, Y. B. Ou and D. D. Ren,
Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263-288.
doi: 10.1016/j.jmaa.2015.02.049. |
[4] |
B. Desjardins, E. Grenier, P. L. Lions and N. Masmoudi,
Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.
doi: 10.1016/S0021-7824(99)00032-X. |
[5] |
C. S. Dou, S. Jiang and Q. C. Ju,
Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.
doi: 10.1007/s00033-013-0311-7. |
[6] |
C. S. Dou, S. Jiang and Y. B. Ou,
Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379-398.
doi: 10.1016/j.jde.2014.09.017. |
[7] |
C. S. Dou and Q. C. Ju,
Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci., 12 (2014), 661-679.
doi: 10.4310/CMS.2014.v12.n4.a3. |
[8] |
J. S. Fan, F. C. Li and G. Nakamura, Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015,387–394.
doi: 10.3934/proc.2015.0387. |
[9] |
J. S. Fan, H. J. Gao and B. L. Guo,
Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient, Math. Methods Appl. Sci., 34 (2011), 2181-2188.
doi: 10.1002/mma.1515. |
[10] |
E. Feireisl and A. Novotny,
Inviscid incompressible limits of the full Navier-Stokes-Fourier system, Comm. Math. Phys., 321 (2013), 605-628.
doi: 10.1007/s00220-013-1691-4. |
[11] |
E. Feireisl and A. Novotny,
The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 186 (2007), 77-107.
doi: 10.1007/s00205-007-0066-4. |
[12] |
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[13] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. Ⅰ. Linearized Steady Problems, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8. |
[14] |
X. P. Hu and D. H. Wang,
Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAMJ. Math. Anal., 41 (2009), 1272-1294.
doi: 10.1137/080723983. |
[15] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.
doi: 10.1137/100785168. |
[16] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.
doi: 10.1007/s00220-010-0992-0. |
[17] |
S. Jiang, Q. C. Ju and F. C. Li,
Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.
doi: 10.1088/0951-7715/25/5/1351. |
[18] |
S. Jiang, Q. C. Ju, F. C. Li and Z. P. Xing,
Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.
doi: 10.1016/j.aim.2014.03.022. |
[19] |
S. Jiang, Q. C. Ju and F. C. Li,
Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.
doi: 10.1137/15M102842X. |
[20] |
S. Jiang and Y. B. Ou,
Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl., 96 (2011), 1-28.
doi: 10.1016/j.matpur.2011.01.004. |
[21] |
F. C. Li, Y. M. Mu and D. H. Wang,
Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 10 (2017), 741-784.
doi: 10.3934/krm.2017030. |
[22] |
Y. P. Li,
Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.
doi: 10.1016/j.jde.2011.10.002. |
[23] |
Y. P. Li and W. A. Yong,
The Zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chin. Ann. Math. Ser. B, 36 (2015), 1043-1054.
doi: 10.1007/s11401-015-0918-4. |
[24] |
J. G. Liu and R. Pego,
Stable discretization of magnetohydrodynamics in bounded domains, Commun. Math. Sci., 8 (2010), 234-251.
doi: 10.4310/CMS.2010.v8.n1.a12. |
[25] |
G. Métivier and S. Schchet,
The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.
doi: 10.1007/PL00004241. |
[26] |
Y. B. Ou,
Low Mach number limit of viscous polytropic fluid flows, J. Differential Equations, 251 (2011), 2037-2065.
doi: 10.1016/j.jde.2011.07.009. |
[27] |
D. D. Ren and Y. B. Ou, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition, Z. Angew. Math. Phys., 67 (2016), Art. 103, 27 pp.
doi: 10.1007/s00033-016-0698-z. |
[28] |
W. Rusin,
On the inviscid limit for the solutions of two-dimensional incompressible Navier-Stokes equations with slip-type boundary conditions, Nonlinearity, 19 (2006), 1349-1363.
doi: 10.1088/0951-7715/19/6/007. |
[29] |
A. Valli,
Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607-647.
|
[30] |
A. Valli and W. M. Zajaczkowski,
Navier-stokes for compressible fluid: Global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), 259-296.
doi: 10.1007/BF01206939. |
[31] |
S. Wang and Z. L. Xu,
Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain, Nonlinear Anal., 105 (2014), 102-119.
doi: 10.1016/j.na.2014.01.008. |
[32] |
Y. L. Xiao and Z. P. Xin,
On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.
doi: 10.1002/cpa.20187. |
[1] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[5] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[6] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[9] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[10] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[11] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[12] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[13] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[14] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[15] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[16] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[17] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[18] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[19] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[20] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]