• Previous Article
    Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay
  • DCDS-B Home
  • This Issue
  • Next Article
    Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition
October  2019, 24(10): 5523-5538. doi: 10.3934/dcdsb.2019069

Fully decoupled schemes for the coupled Schrödinger-KdV system

1. 

School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223300, China

2. 

Department of Basis Education, Jiangsu Vocational College of Finance & Economics, Huaian, Jiangsu, 223003, China

* Corresponding author: cjx1981@hytc.edu.cn (J. Cai)

Received  July 2018 Revised  December 2018 Published  April 2019

Fund Project: The first author is supported by the Natural Science Foundation of Jiangsu Province of China grant BK20181482, Qing Lan Project of Jiangsu Province of China and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and President.

The coupled numerical schemes are inefficient for the time-dependent coupled Schrödinger-KdV system. In this study, some splitting schemes are proposed for the system based on the operator splitting method and coordinate increment discrete gradient method. The schemes are decoupled, so that each of the variables can be solved separately at each time level. Ample numerical experiments are carried out to demonstrate the efficiency and accuracy of our schemes.

Citation: Jiaxiang Cai, Juan Chen, Bin Yang. Fully decoupled schemes for the coupled Schrödinger-KdV system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5523-5538. doi: 10.3934/dcdsb.2019069
References:
[1]

K. O. Aiyesimoju and R. J. Sobey, Process splitting of the boundary conditions for the advection-dispersion equation, Int. J. Numer. Methods Fluids, 9 (1989), 235-244.  doi: 10.1002/fld.1650090208.  Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409-426.  doi: 10.1007/s13163-012-0097-8.  Google Scholar

[3]

K. Appert and J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845-1849.  doi: 10.1063/1.861802.  Google Scholar

[4]

U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.  doi: 10.1016/j.apnum.2003.09.002.  Google Scholar

[5]

D. M. Bai and L. M. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237-2244.  doi: 10.1016/j.physleta.2009.04.043.  Google Scholar

[6]

J. CaiC. Bai and H. Zhang, Efficient schemes for the coupled Schrödinger-KdV equations: Decoupled and conserving three invariants, Appl. Math. Lett., 86 (2018), 200-207.  doi: 10.1016/j.aml.2018.06.038.  Google Scholar

[7]

J. CaiY. Wang and C. Jiang, Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs, Comput. Phys. Commun., 235 (2019), 210-220.  doi: 10.1016/j.cpc.2018.08.015.  Google Scholar

[8]

J. X. CaiC. Z. Bai and H. H. Zhang, Decoupled local/global energy-preserving schemes for the $N$-coupled nonlinear Schrödinger equations, J. Comput. Phys., 374 (2018), 281-299.  doi: 10.1016/j.jcp.2018.07.050.  Google Scholar

[9]

J. CaiB. Yang and C. Zhang, Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system, Appl. Math. Lett., 91 (2019), 76-82.  doi: 10.1016/j.aml.2018.11.024.  Google Scholar

[10]

J. X. CaiJ. L. HongY. S. Wang and Y. Z. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis, SIAM J. Numer. Anal., 53 (2015), 1918-1940.  doi: 10.1137/140971609.  Google Scholar

[11]

E. CelledoniV. GrimmR. I. McLachlanD. I. McLarenD. O'NealeB. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ``Average Vector Field" method, J. Comput. Phys., 231 (2012), 6770-6789.  doi: 10.1016/j.jcp.2012.06.022.  Google Scholar

[12]

E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35 (2002), 6853-6872.  doi: 10.1088/0305-4470/35/32/306.  Google Scholar

[13]

A. Golbabai and A. S. Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242.  doi: 10.1007/s00607-010-0138-4.  Google Scholar

[14]

Y. Z. GongJ. Q. Gao and Y. S. Wang, High order Gauss-Seidel schemes for charged particle dynamics, Discrete Cont. Dyn. B, 23 (2018), 573-585.  doi: 10.3934/dcdsb.2018034.  Google Scholar

[15]

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Eng., 134 (1996), 197-222.  doi: 10.1016/0045-7825(96)01009-2.  Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[17]

M. S. Ismail, F. M. Mosally and K. M. Alamoudi, Petrov-Galerkin method for the coupled nonlinear Schödinger-KdV equation, Abstr. Appl. Anal., 2014 (2014), Art. ID 705204, 8 pp. doi: 10.1155/2014/705204.  Google Scholar

[18]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1998), 85-102.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[19]

R. J. LeVeque, Intermediate boundary conditions for time-split methods applied to hyperbolic partial differential equations, Math. Comput., 47 (1986), 37-54.  doi: 10.1090/S0025-5718-1986-0842122-8.  Google Scholar

[20]

Y. Q. Liu, R. J. Cheng and H. X. Ge, An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations, Chin. Phys. B, 22 (2013), 100204, 9pp. doi: 10.1088/1674-1056/22/10/100204.  Google Scholar

[21]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), 394-406.  doi: 10.1016/0167-2789(82)90043-4.  Google Scholar

[22]

Ö. Oruc and A. Esen, A Haar wavelet collocation method for coupled nonlinear Schödinger-KdV equations, Int. J. Modern Phys. C, 27 (2016), 1650103, 16pp. doi: 10.1142/S0129183116501035.  Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[24]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carolo simulations, Phys. Lett. A, 146 (1990), 319-323.  doi: 10.1016/0375-9601(90)90962-N.  Google Scholar

[25]

X. P. WangC. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 171 (2001), 357-372.  doi: 10.1006/jcph.2001.6793.  Google Scholar

[26]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

[27]

Z. Zhang, S. S. Song, X. D. Chen and W. E. Zhou, Average vector field methods for the coupled Schrödinger-KdV equations, Chin. Phys. B, 23 (2014), 070208, 9pp. doi: 10.1088/1674-1056/23/7/070208.  Google Scholar

show all references

References:
[1]

K. O. Aiyesimoju and R. J. Sobey, Process splitting of the boundary conditions for the advection-dispersion equation, Int. J. Numer. Methods Fluids, 9 (1989), 235-244.  doi: 10.1002/fld.1650090208.  Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409-426.  doi: 10.1007/s13163-012-0097-8.  Google Scholar

[3]

K. Appert and J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845-1849.  doi: 10.1063/1.861802.  Google Scholar

[4]

U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.  doi: 10.1016/j.apnum.2003.09.002.  Google Scholar

[5]

D. M. Bai and L. M. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237-2244.  doi: 10.1016/j.physleta.2009.04.043.  Google Scholar

[6]

J. CaiC. Bai and H. Zhang, Efficient schemes for the coupled Schrödinger-KdV equations: Decoupled and conserving three invariants, Appl. Math. Lett., 86 (2018), 200-207.  doi: 10.1016/j.aml.2018.06.038.  Google Scholar

[7]

J. CaiY. Wang and C. Jiang, Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs, Comput. Phys. Commun., 235 (2019), 210-220.  doi: 10.1016/j.cpc.2018.08.015.  Google Scholar

[8]

J. X. CaiC. Z. Bai and H. H. Zhang, Decoupled local/global energy-preserving schemes for the $N$-coupled nonlinear Schrödinger equations, J. Comput. Phys., 374 (2018), 281-299.  doi: 10.1016/j.jcp.2018.07.050.  Google Scholar

[9]

J. CaiB. Yang and C. Zhang, Efficient mass- and energy-preserving schemes for the coupled nonlinear Schrödinger-Boussinesq system, Appl. Math. Lett., 91 (2019), 76-82.  doi: 10.1016/j.aml.2018.11.024.  Google Scholar

[10]

J. X. CaiJ. L. HongY. S. Wang and Y. Z. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis, SIAM J. Numer. Anal., 53 (2015), 1918-1940.  doi: 10.1137/140971609.  Google Scholar

[11]

E. CelledoniV. GrimmR. I. McLachlanD. I. McLarenD. O'NealeB. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ``Average Vector Field" method, J. Comput. Phys., 231 (2012), 6770-6789.  doi: 10.1016/j.jcp.2012.06.022.  Google Scholar

[12]

E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35 (2002), 6853-6872.  doi: 10.1088/0305-4470/35/32/306.  Google Scholar

[13]

A. Golbabai and A. S. Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242.  doi: 10.1007/s00607-010-0138-4.  Google Scholar

[14]

Y. Z. GongJ. Q. Gao and Y. S. Wang, High order Gauss-Seidel schemes for charged particle dynamics, Discrete Cont. Dyn. B, 23 (2018), 573-585.  doi: 10.3934/dcdsb.2018034.  Google Scholar

[15]

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Eng., 134 (1996), 197-222.  doi: 10.1016/0045-7825(96)01009-2.  Google Scholar

[16]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[17]

M. S. Ismail, F. M. Mosally and K. M. Alamoudi, Petrov-Galerkin method for the coupled nonlinear Schödinger-KdV equation, Abstr. Appl. Anal., 2014 (2014), Art. ID 705204, 8 pp. doi: 10.1155/2014/705204.  Google Scholar

[18]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1998), 85-102.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[19]

R. J. LeVeque, Intermediate boundary conditions for time-split methods applied to hyperbolic partial differential equations, Math. Comput., 47 (1986), 37-54.  doi: 10.1090/S0025-5718-1986-0842122-8.  Google Scholar

[20]

Y. Q. Liu, R. J. Cheng and H. X. Ge, An element-free Galerkin (EFG) method for numerical solution of the coupled Schrödinger-KdV equations, Chin. Phys. B, 22 (2013), 100204, 9pp. doi: 10.1088/1674-1056/22/10/100204.  Google Scholar

[21]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), 394-406.  doi: 10.1016/0167-2789(82)90043-4.  Google Scholar

[22]

Ö. Oruc and A. Esen, A Haar wavelet collocation method for coupled nonlinear Schödinger-KdV equations, Int. J. Modern Phys. C, 27 (2016), 1650103, 16pp. doi: 10.1142/S0129183116501035.  Google Scholar

[23]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[24]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carolo simulations, Phys. Lett. A, 146 (1990), 319-323.  doi: 10.1016/0375-9601(90)90962-N.  Google Scholar

[25]

X. P. WangC. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 171 (2001), 357-372.  doi: 10.1006/jcph.2001.6793.  Google Scholar

[26]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.  Google Scholar

[27]

Z. Zhang, S. S. Song, X. D. Chen and W. E. Zhou, Average vector field methods for the coupled Schrödinger-KdV equations, Chin. Phys. B, 23 (2014), 070208, 9pp. doi: 10.1088/1674-1056/23/7/070208.  Google Scholar

Figure 1.  The solutions for the CS-KdV system at $ T = 50 $. Solid line: exact solution; Star: numerical solutions
Figure 2.  Top: the errors in solution; Bottom: the changes in invariants
Figure 3.  Left: the maximal error in solution Vs. time step (Red: S-CI-1; Blue: S-CI-2$ \hat{b} $; Square: $ E $; Circle: $ N $); Right: the changes in invariants Vs. time step (Red: S-CI-1; Blue: S-CI-2$ \hat{b} $; Square: $ \mathcal{I}_1 $; Star: $ \mathcal{I}_3 $)
Figure 4.  Left: the maximal error in solution Vs. CPU time (Circle: S-CI-1; Star: S-AVF-2; Square: S-CI-2$ \hat{a} $; Diamond: S-CI-2$ \underline{a} $; Red triangle: AVFS [27])
Figure 5.  The numerical (Star) and exact (solid line) solutions at $ T = 1 $ for the case $ \gamma = 0.1 $
Figure 6.  The numerical (Star) and exact (solid line) solutions at $ T = 1 $ for the case $ \gamma = 1 $
Figure 7.  The errors in solution (top) and the relative changes in invariants (bottom) for the cases $ \gamma = 1 $ (left) and $ \gamma = 10 $ (right), respectively
Figure 8.  The numerical (circle) and exact solutions (solid line) for the case $ \gamma = 10 $
Table 1.  The solution errors for the CS-KdV system (1): $ x\in[-30,30] $, $ \Delta x = 0.5 $, $ \tau = 0.1 $ and $ T = 10 $
Method e2,p e2,q e2,N ${{\rm{e}}_{\infty ,p}}$ ${{\rm{e}}_{\infty ,q}}$ ${{\rm{e}}_{\infty ,N}}$
$\;{\rm{S-CI}}-2\hat a$ 7.16e-3 7.81e-3 1.27e-4 2.98e-3 6.02e-3 1.80e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 7.16e-3 7.81e-3 1.21e-4 2.98e-3 6.01e-3 1.71e-4
${\rm{S-CI}}-2\hat b$ 7.12e-3 7.75e-3 1.35e-4 3.08e-3 5.95e-3 1.91e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.12e-3 7.75e-3 1.38e-4 3.08e-3 5.95e-3 1.95e-4
AVF[27] 7.13e-3 7.80e-3 3.27e-4 2.95e-3 5.98e-3 1.13e-4
AVFS[27] 7.16e-3 7.81e-3 5.05e-4 2.99e-3 6.01e-3 1.71e-4
EFG[20] 9.28e-3 1.42e-2 2.09e-3 3.45e-3 9.53e-3 7.74e-4
Method e2,p e2,q e2,N ${{\rm{e}}_{\infty ,p}}$ ${{\rm{e}}_{\infty ,q}}$ ${{\rm{e}}_{\infty ,N}}$
$\;{\rm{S-CI}}-2\hat a$ 7.16e-3 7.81e-3 1.27e-4 2.98e-3 6.02e-3 1.80e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 7.16e-3 7.81e-3 1.21e-4 2.98e-3 6.01e-3 1.71e-4
${\rm{S-CI}}-2\hat b$ 7.12e-3 7.75e-3 1.35e-4 3.08e-3 5.95e-3 1.91e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.12e-3 7.75e-3 1.38e-4 3.08e-3 5.95e-3 1.95e-4
AVF[27] 7.13e-3 7.80e-3 3.27e-4 2.95e-3 5.98e-3 1.13e-4
AVFS[27] 7.16e-3 7.81e-3 5.05e-4 2.99e-3 6.01e-3 1.71e-4
EFG[20] 9.28e-3 1.42e-2 2.09e-3 3.45e-3 9.53e-3 7.74e-4
Table 2.  The maximal solution errors for the CS-KdV system (1): $ x\in[-50,50] $, $ \Delta x = 0.1 $, $ \tau = 0.1 $ and $ T = 8 $
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat a$ 2.15e-4 1.69e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 1.98e-4 1.61e-4
${\rm{S-CI}}-2\hat b$ 7.41e-5 2.88e-5
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.40e-5 2.68e-5
HW[22] 1.21e-4 1.14e-4
2-order PGM[17] 9.41e-5 2.92e-5
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat a$ 2.15e-4 1.69e-4
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a}$ 1.98e-4 1.61e-4
${\rm{S-CI}}-2\hat b$ 7.41e-5 2.88e-5
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 7.40e-5 2.68e-5
HW[22] 1.21e-4 1.14e-4
2-order PGM[17] 9.41e-5 2.92e-5
Table 3.  The maximal solution errors for CS-KdV system (1): $ x\in[-50,50] $, $ \Delta x = 0.1 $, $ \tau = 0.0001 $ and $ T = 0.1 $
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat b$ 1.73e-5 2.57e-10
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 1.73e-5 2.57e-10
4-order RK-PGM[17] 4.73e-5 5.65e-8
Method ${{\rm{e}}_{\infty ,E}}$ ${{\rm{e}}_{\infty ,N}}$
${\rm{S-CI}}-2\hat b$ 1.73e-5 2.57e-10
${\rm{S-CI}}-2\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{b}$ 1.73e-5 2.57e-10
4-order RK-PGM[17] 4.73e-5 5.65e-8
[1]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[7]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[8]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[10]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[11]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[16]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[20]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (148)
  • HTML views (378)
  • Cited by (0)

Other articles
by authors

[Back to Top]