[1]
|
H. Björnsson, P. Giesl, S. Gudmundsson and S. Hafstein, Local Lyapunov functions for nonlinear stochastic differential equations by linearization, In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018) - Volume 1, 2018,579–586, .
|
[2]
|
M. Buhmann, Radial Basis Functions: Theory and Implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543241.
|
[3]
|
F. Camilli and L. Grüne, Characterizing attraction probabilities via the stochastic Zubov equation, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 457-468.
doi: 10.3934/dcdsb.2003.3.457.
|
[4]
|
P. Giesl, Construction of Global Lyapunov functions using Radial Basis Functions, volume 1904 of Lecture Notes in Mathematics, Springer, Berlin, 2007.
|
[5]
|
P. Giesl and S. Hafstein, Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291.
|
[6]
|
P. Giesl and N. Mohammed, Verification estimates for the construction of Lyapunov functions using meshfree collocation, Discrete Contin. Dyn. Syst. Ser. B, in press.
|
[7]
|
P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems, SIAM J. Numer. Anal., 45 92007), 1723–1741.
doi: 10.1137/060658813.
|
[8]
|
S. Gudmundsson and S. Hafstein, Probabilistic basin of attraction and its estimation using two Lyapunov functions, Complexity, 2018 (2018), Article ID 2895658, 9 pages.
doi: 10.1155/2018/2895658.
|
[9]
|
S. Hafstein, S. Gudmundsson, P. Giesl and E. Scalas, Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 2 (2018), 939-956.
doi: 10.3934/dcdsb.2018049.
|
[10]
|
N. Mohammed, Grid Refinement and Verification Estimates for the RBF Construction Method of Lyapunov Functions, PhD thesis, University of Sussex, 2016.
|
[11]
|
M. J. D. Powell, The theory of radial basis function approximation in 1990, In Advances in Numerical Analysis, Vol. Ⅱ (Lancaster, 1990), Oxford Sci. Publ., pages 105-210. Oxford Univ. Press, New York, 1992.
|
[12]
|
R. Schaback and H. Wendland, Kernel techniques: From machine learning to meshless methods, Acta Numer., 15 (2006), 543-639.
doi: 10.1017/S0962492906270016.
|
[13]
|
H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory, 93 (1998), 258-272.
doi: 10.1006/jath.1997.3137.
|
[14]
|
H. Wendland, Scattered Data Approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2005.
|