[1]
|
T. Baxter, Low infectivity of tuberculosis, The Lancet, 342 (1993), 371.
|
[2]
|
U. Beijer, A. Wolf and S. Fazel, Prevalence of tuberculosis, hepatitis C virus, and HIV in homeless people: A systematic review and meta–analysis, Lancet Infectious Diseases, 12 (2012), 859-870.
doi: 10.1016/S1473–3099(12)70177–9.
|
[3]
|
S. Bowong and A. A. Alaoui, Optimal intervention strategies for tuberculosis, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 1441-1453.
doi: 10.1016/j.cnsns.2012.08.001.
|
[4]
|
T. F. Brewer and S. J. Heymann, To control and beyond: Moving towards eliminating the global tuberculosis threat, Journal of Epidemiology and Community Health, 58 (2004), 822-825.
doi: 10.1136/jech.2003.008664.
|
[5]
|
C. Castillo–Chavez and B. Song, Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 1 (2004), 361-404.
doi: 10.3934/mbe.2004.1.361.
|
[6]
|
M. Choiński, M. Bodzioch and U. Foryś, Analysis of a criss–cross model of tuberculosis for homeless and non–homeless subpopulations, Communications in Nonlinear Science and Numerical Simulation, (2018), under review.
|
[7]
|
Central statistical office of Poland, Statistical yearbooks, (2017), accessed 2018 April 30, http://stat.gov.pl/en/topics/statistical–yearbooks/
|
[8]
|
A. B. Curtis, R. Ridzon, L. F. Novick, J. Driscoll, D. Blair, M. Oxtoby, M. McGarry, B. Hiscox, C. Faulkner, H. Taber, S. Valway and I. M. Onorato, Analysis of Mycobacterium tuberculosis transmission patterns in a homeless shelter outbreak, International Journal of Tuberculosis and Lung Disease, 4 (2000), 308-313.
|
[9]
|
O. Diekmann, J. A.P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[10]
|
K. Dietz, Models for vector–borne parasitic diseases, Lecture Notes in Biomathematics, 39 (1980), 264-277.
doi: 10.1007/978–3–642–93161–1_15.
|
[11]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub–threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025–5564(02)00108–6.
|
[12]
|
J. Dushoff, W. Huang and C. Castillo–Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, Journal of Mathematical Biology, 36 (1998), 227-248.
doi: 10.1007/s002850050099.
|
[13]
|
H. W. Hethcote, An immunization model for a heterogeneous population, Theoretical Population Biology, 14 (1978), 338-349.
doi: 10.1016/0040–5809(78)90011–4.
|
[14]
|
H. W. Hethcote and J. W. van Ark, Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs, Mathematical Biosciences, 84 (1987), 85-118.
doi: 10.1016/0025–5564(87)90044–7.
|
[15]
|
H. Hethcote, M. Zhien and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Mathematical Biosciences, 180 (2002), 141-160.
doi: 10.1016/S0025–5564(02)00111–6.
|
[16]
|
S. A. Knopf, Tuberculosis as a cause and result of poverty, Journal of the American Medical Association, 63 (1914), 1720-1725.
doi: 10.1001/jama.1914.02570200014004.
|
[17]
|
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, 28 (1976), 221-236.
doi: 10.1016/0025–5564(76)90125–5.
|
[18]
|
J. Lukacs, V. Tubak, J. Mester, S. Dávid, Z. Bártfai, T. Kubica, S. Niemann and A. Somoskövi, Conventional and molecular epidemiology of tuberculosis in homeless patients in Budapest, Hungary, Journal of Clinical Microbiology, 42 (2004), 5931-5934.
doi: 10.1128/JCM.42.12.5931–5934.2004.
|
[19]
|
Marshall office, Regional Center for Social Policy, Olsztyn, Poland, Information about homelessness, (2017), accessed 2018 April 30, http://warmia.mazury.pl/images/Departamenty/Regionalny_Osrodek_Polityki_Spolecznej/bezdomnosc-raport-2017/Bezdomno%C5%9B%C4%87__2016.doc
|
[20]
|
B. M. Murphy, B. H. Singer, S. Anderson and D. Kirschner, Comparing epidemic tuberculosis in demographically distinct heterogeneous populations., Mathematical Biosciences, 180 (2002), 161-185.
doi: 10.1016/S0025–5564(02)00133–5.
|
[21]
|
J. D. Murray, Mathematical Biology: Ⅰ. An Introduction, Springer, 2002.
|
[22]
|
C. Ozcaglar, A. Shabbeer, S. L. Vandenberg, B. Yener and B. Bennet, Epidemiological models of Mycobacterium tuberculosis complex infections, Mathematical Biosciences, 236 (2012), 77-96.
doi: 10.1016/j.mbs.2012.02.003.
|
[23]
|
J. Romaszko, A. Siemaszko, M. Bodzioch, A. Buciński and A. Doboszyńska, Active case finding among homeless people as a means of reducing the incidence of pulmonary tuberculosis in general population, Advances in Experimental Medicine and Biology, 911 (2016), 67-76.
doi: 10.1007/5584_2016_225.
|
[24]
|
S. P. N. Singh, N. K. Mehra, H. B. Dingley, J. N. Pande and M. C. Vaidya, Human leukocyte antigen (HLA)–linked control of susceptibility to pulmonary tuberculosis and association with HLA–DR types, The Journal of Infectious Diseases, 148 (1983), 676-681.
doi: 10.1093/infdis/148.4.676.
|
[25]
|
J. Tan de Bibiana, C. Rossi, P. Rivest, A. Zwerling, L. Thibert, F. McIntosh, M. A. Behr, D. Menzies and K. Schwartzman, Tuberculosis and homelessness in Montreal: A retrospective cohort study, BMC Public Health, 11 (2011), 833.
doi: 10.1186/1471–2458–11–833.
|
[26]
|
X. Zhou, X. Shi and H. Cheng, Modelling and stability analysis for a tuberculosis model with healthy education and treatment, Computational and Applied Mathematics, 32 (2013), 245-260.
doi: 10.1007/s40314–013–0008–8.
|