\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Strong convergence of neutral stochastic functional differential equations with two time-scales

Abstract Full Text(HTML) Related Papers Cited by
  • The purpose of this paper is to discuss the strong convergence of neutral stochastic functional differential equations (NSFDEs) with two time-scales. The existence and uniqueness of invariant measure of the fast component is proved by using Wasserstein distance and the stability-in-distribution argument. The strong convergence between the slow component and the averaged component is also obtained by the the averaging principle in the spirit of Khasminskii's approach.

    Mathematics Subject Classification: 60H10, 60H30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. BaoQ. SongG. Yin and C. Yuan, Ergodicity and strong limit results for two-time-scale functional stochastic differential equations, Stoc. Anal. Appl., 35 (2017), 1030-1046.  doi: 10.1080/07362994.2017.1349613.
    [2] J. BaoG. Yin and C. Yuan, Ergodicity for functional stochastic differential equations and applications, Nonlinear Anal., 98 (2014), 66-82.  doi: 10.1016/j.na.2013.12.001.
    [3] J. Bao, G. Yin and C.Yuan, Stationary Distributions for Retarded Stochastic Differential Equations without Dissipativity, arXiv: 1308.2018.
    [4] D. BlömkerM. Hairer and G. A. Pavliotis, Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20 (2007), 1721-1744.  doi: 10.1088/0951-7715/20/7/009.
    [5] C.-E. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Process. Appl., 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.
    [6] M.-F. Chen, From Markov Chains to Non-Equilibrium Particle Systems, Second Edition, World Scientific, Singapore, 2004. doi: 10.1142/9789812562456.
    [7] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, In: London Mathematical Society. Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829.
    [8] R. D. Drive, A functional differential system of neutral type arising in a two-body problem of classical electrodynamics, in Nonlinear Differential Equations and Nonlinear Mechanics, 474-484, Academic Press, New York, 1963.
    [9] W. ED. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations, Comm. Pure Appl. Math., 58 (2005), 1544-1585.  doi: 10.1002/cpa.20088.
    [10] A. Es-SarhirM. Scheutzow and O. van Gaans, Invariant measures for stochastic functional differential equations with superlinear drift term, Differential Integral Equations, 23 (2010), 189-200. 
    [11] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, second ed., New York, Springer-Verlag, 1998. doi: 10.1007/978-1-4612-0611-8.
    [12] H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales, Stochastic Process. Appl., 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.
    [13] D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems, SIAM Multiscale Model. Simul., 6 (2007), 577-594.  doi: 10.1137/060673345.
    [14] D. GivonI. G. Kevrekidis and R. Kupferman, Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems, Commun. Math. Sci., 4 (2006), 707-729.  doi: 10.4310/CMS.2006.v4.n4.a2.
    [15] M. HairerJ. C. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223-259.  doi: 10.1007/s00440-009-0250-6.
    [16] Y. Kabanov and S. Pergamenshchikov, Two-Scale Stochastic Systems, Springer, Berlin, 2003. doi: 10.1007/978-3-662-13242-5.
    [17] R. Z. Khasminskii, On an averaging principle for Itô stochastic differential equations, Kibernetica, 4 (1968), 260-279. 
    [18] M. S. Kinnally and R. J. Williams, On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints, Electron. J. Probab., 15 (2010), 409-451.  doi: 10.1214/EJP.v15-756.
    [19] S. B. Kuksin and A. L. Piatnitski, Khasminski-Whitman averaging for randonly perturbed KdV equations, J Math Pures Appl., 89 (2008), 400-428.  doi: 10.1016/j.matpur.2007.12.003.
    [20] H. J. Kushner, Large deviations for two-time-scale diffusions, with delays, Appl. Math. Optim., 62 (2010), 295-322.  doi: 10.1007/s00245-010-9104-y.
    [21] H. J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser, Boston, MA, 1990. doi: 10.1007/978-1-4612-4482-0.
    [22] D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., 8 (2010), 999-1020.  doi: 10.4310/CMS.2010.v8.n4.a11.
    [23] Y. Liu and G. Yin, Asymptotic expansions of transition densities for hybrid jump-diffusions, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 1-18.  doi: 10.1007/s10255-004-0143-5.
    [24] X. Mao, Stochastic Differential Equations and Applications, 2nd Ed., Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.
    [25] S.-E. A. Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.
    [26] M. Rei$\beta$M. Riedle and O. van Gaans, Delay differential equations driven by Lévy processes: Stationarity and Feller properties, Stochastic Process. Appl., 116 (2006), 1409-1432.  doi: 10.1016/j.spa.2006.03.002.
    [27] G. Yin and Q. Zhang, Continuous-time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd Ed., Springer, New York, NY, 2013. doi: 10.1007/978-1-4614-4346-9.
  • 加载中
SHARE

Article Metrics

HTML views(616) PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return