In this paper, we investigate the convergence in probability of a stochastic symplectic scheme for stochastic nonlinear Schrödinger equation with quadratic potential and an additive noise. Theoretical analysis shows that our symplectic semi-discretization is of order one in probability under appropriate regularity conditions for the initial value and noise. Numerical experiments are given to simulate the long time behavior of the discrete averaged charge and energy as well as the influence of the external potential and noise, and to test the convergence order.
Citation: |
[1] |
C. Anton, J. Deng and Y. Wong, Weak symplectic schemes for stochastic Hamiltonian equations, Electron. T. Numer. Ana., 43 (2014), 1-20.
![]() ![]() |
[2] |
R. Anton and D. Cohen, Exponential Integrators for stochastic Schrödinger equations driven by Itô noise, J. Comput. Math., 2 (2018), 276-309.
doi: 10.4208/jcm.1701-m2016-0525.![]() ![]() ![]() |
[3] |
W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.
doi: 10.3934/krm.2013.6.1.![]() ![]() ![]() |
[4] |
R. Belaouar, A. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 3 (2015), 103-132.
doi: 10.1007/s40072-015-0044-z.![]() ![]() ![]() |
[5] |
R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential, Math. Models Methods Appl. Sci., 12 (2002), 1513-1523.
doi: 10.1142/S0218202502002215.![]() ![]() ![]() |
[6] |
C. Chen and J. Hong, Symplectic Runge-Kutta semidiscretization for stochastic Schrödinger equation, SIAM J. Numer. Anal., 54 (2016), 2569-2593.
doi: 10.1137/151005208.![]() ![]() ![]() |
[7] |
C. Chen, J. Hong and L. Ji, Mean-Square convergence of a symplectic local discontinuous Galerkin method applied to stochastic linear Schrödinger equation, IMA J. Numer. Anal., 37 (2017), 1041-1065.
doi: 10.1093/imanum/drw023.![]() ![]() ![]() |
[8] |
J. Cui, J. Hong and Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equ., 263 (2017), 3687-3713.
doi: 10.1016/j.jde.2017.05.002.![]() ![]() ![]() |
[9] |
A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Anal. Appl., 21 (2003), 97-126.
doi: 10.1081/SAP-120017534.![]() ![]() ![]() |
[10] |
A. de Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96 (2004), 733-770.
doi: 10.1007/s00211-003-0494-5.![]() ![]() ![]() |
[11] |
A. de Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), 369-399.
doi: 10.1007/s00245-006-0875-0.![]() ![]() ![]() |
[12] |
D. Fang, L. Zhang and T. Zhang, On the well-posedness for stochastic Schrödinger equations with quadratic potential, Chin. Ann. Math. Ser. B, 32 (2011), 711-728.
doi: 10.1007/s11401-011-0670-3.![]() ![]() ![]() |
[13] |
J. Hong, Y. Liu, H. Munthe-Kaas and A. Zanna, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Appl. Numer. Math., 56 (2006), 814-843.
doi: 10.1016/j.apnum.2005.06.006.![]() ![]() ![]() |
[14] |
S. Jiang, L. Wang and J. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Commun. Comput. Phys., 14 (2013), 393-411.
doi: 10.4208/cicp.230212.240812a.![]() ![]() ![]() |
[15] |
V. Konotop and L. Vázquez, Nonlinear Random Waves, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
doi: 10.1142/9789814350259.![]() ![]() ![]() |
[16] |
L. Meng, J. Li and J. Tao, Blow-up for the stochastic nonlinear Schrödinger equations with quadratic potential and additive noise, Bound. Value Probl., 2015 (2015), 1-18.
doi: 10.1186/s13661-015-0394-5.![]() ![]() ![]() |
[17] |
G. Milstein, Y. Repin and M. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure., SIAM J. Numer. Anal., 40 (2002), 1583-1604.
doi: 10.1137/S0036142901395588.![]() ![]() ![]() |
Rates of convergence for
The profile of numerical solution
The profile of
The evolution of the averaged discrete charge as
The evolution of the averaged discrete energy as
The global errors of charge conservation law for our proposed scheme (left) and Crank-Nicolson scheme (right) as
The evolution of the averaged charge for our proposed scheme (left) and Crank-Nicolson scheme (right) at
The evolution of the averaged charge for our proposed scheme (left) and Crank-Nicolson scheme (right) at