# American Institute of Mathematical Sciences

August  2019, 24(8): 4367-4377. doi: 10.3934/dcdsb.2019123

## On a discrete three-dimensional Leslie-Gower competition model

 1 Institute of Mathematics, Academia Sinica, Taipei, Taiwan 106 2 Department of Mathematics, National Taiwan University, Taipei, Taiwan 106

* Corresponding author

Received  April 2018 Revised  January 2019 Published  August 2019 Early access  June 2019

Fund Project: The first author is partially supported by a research grant from MOST, ROC; the second author was partially supported by Academia Sinica during a visit to the Mathematics Institute.

We consider a special discrete time Leslie-Gower competition models for three species: $x_i(t+1) = \frac{a_ix_i(t)}{1+x_i(t) +c \sum_{j\not = i} x_j(t)}$   for $1\leq i \leq 3$ and $t \geq 0$. Here $c$ is the interspecific coefficient among different species. Assume $a_1>a_2>a_3>1$. It is shown that when $0<c< c_0: = (a_3-1)/(a_1+a_2-a_3-1)$, a unique interior equilibrium $E^*$ exists and is locally stable. Then from a general theorem in Balreira, Elaydi and Luis (2017), it follows that $E^*$ is globally asymptotically stable. Using a result of Ruiz-Herrera [11], it is shown that the unique positive equilibrium in the $x_1x_2$-plane is globally asymptotically stable for $c_0<c<\beta_{21} = (a_2-1)/(a_1-1)$. Then it is shown that $(a_1-1, 0, 0)$ is globally asymptotically stable for $\beta_{21} <c<\beta_{12} = (a_1-1)/(a_2-1)$. This partially generalizes a result in Chow and Hsieh (2013) and Ackleh, Sacker and Salceanu (2014). For $c>\beta_{12}$, it is shown that there are multiple asymptotically stable equilibria.

Citation: Yunshyong Chow, Kenneth Palmer. On a discrete three-dimensional Leslie-Gower competition model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4367-4377. doi: 10.3934/dcdsb.2019123
##### References:
 [1] A. S. Ackleh, Y. M. Dib and S. Jang, A discrete-time Beverton–Holt competition model, Proc. 9th International Conference on Difference Equations and Discrete Dynamical Systems (eds. L. Allen, B. Aulbach, S. Elaydi, and R. Sacker), World Scientific, (2005), 1–9. doi: 10.1142/9789812701572_0001. [2] A. S. Ackleh, R. J. Sacker and P. Salceanu, On a discrete selection-mutation model, J. Difference Eqn. Appl., 20 (2014), 1383-1403.  doi: 10.1080/10236198.2014.933819. [3] L. J. S. Allen, An Introduction to Mathematical Biology, Pearson, Upper Saddle River, 2007. [4] E. C. Balreira, S. Elaydi and R. Luis, Global stability of higher dimensional monotone maps, J. Difference Eqn. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375. [5] Y. Chow and J. Hsieh, On multi-dimensional discrete-time Beverton-Holt competition models, J. Difference Eqn. Appl., 19 (2013), 491-506.  doi: 10.1080/10236198.2012.656618. [6] Y. Chow, Asymptotic behavior of a special Leslie-Gower competition model for n species, preprint. [7] J. M. Cushing, S. Levarge, N. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Eqn. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739. [8] M. R. S. Kulenovic and O. Merino, Competitive-exclusion versus competitive-coexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141-1156.  doi: 10.3934/dcdsb.2006.6.1141. [9] M. R. S. Kulenovic and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2471-2486.  doi: 10.1142/S0218127410027118. [10] P. Liu and S. Elaydi, Discrete competitive and cooperative models of Lotka-Volterra type, J. Comp. Anal. Appl., 3 (2001), 53-73.  doi: 10.1023/A:1011539901001. [11] A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Eqn. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.

show all references

##### References:
 [1] A. S. Ackleh, Y. M. Dib and S. Jang, A discrete-time Beverton–Holt competition model, Proc. 9th International Conference on Difference Equations and Discrete Dynamical Systems (eds. L. Allen, B. Aulbach, S. Elaydi, and R. Sacker), World Scientific, (2005), 1–9. doi: 10.1142/9789812701572_0001. [2] A. S. Ackleh, R. J. Sacker and P. Salceanu, On a discrete selection-mutation model, J. Difference Eqn. Appl., 20 (2014), 1383-1403.  doi: 10.1080/10236198.2014.933819. [3] L. J. S. Allen, An Introduction to Mathematical Biology, Pearson, Upper Saddle River, 2007. [4] E. C. Balreira, S. Elaydi and R. Luis, Global stability of higher dimensional monotone maps, J. Difference Eqn. Appl., 23 (2017), 2037-2071.  doi: 10.1080/10236198.2017.1388375. [5] Y. Chow and J. Hsieh, On multi-dimensional discrete-time Beverton-Holt competition models, J. Difference Eqn. Appl., 19 (2013), 491-506.  doi: 10.1080/10236198.2012.656618. [6] Y. Chow, Asymptotic behavior of a special Leslie-Gower competition model for n species, preprint. [7] J. M. Cushing, S. Levarge, N. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Eqn. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739. [8] M. R. S. Kulenovic and O. Merino, Competitive-exclusion versus competitive-coexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141-1156.  doi: 10.3934/dcdsb.2006.6.1141. [9] M. R. S. Kulenovic and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2471-2486.  doi: 10.1142/S0218127410027118. [10] P. Liu and S. Elaydi, Discrete competitive and cooperative models of Lotka-Volterra type, J. Comp. Anal. Appl., 3 (2001), 53-73.  doi: 10.1023/A:1011539901001. [11] A. Ruiz-Herrera, Exclusion and dominance in discrete population models via the carrying simplex, J. Difference Eqn. Appl., 19 (2013), 96-113.  doi: 10.1080/10236198.2011.628663.
 [1] Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585 [2] Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 [3] Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133 [4] Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236 [5] Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 [6] Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172 [7] Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228 [8] Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042 [9] Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127 [10] Rong Zou, Shangjiang Guo. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4189-4210. doi: 10.3934/dcdsb.2020093 [11] Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2189-2219. doi: 10.3934/dcdsb.2021129 [12] Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 [13] Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations and Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115 [14] Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 [15] Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 [16] Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022062 [17] Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065 [18] Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042 [19] C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289 [20] Yong Yao, Lingling Liu. Dynamics of a Leslie-Gower predator-prey system with hunting cooperation and prey harvesting. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021252

2021 Impact Factor: 1.497