-
Previous Article
Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients
- DCDS-B Home
- This Issue
-
Next Article
On the eventual stability of asymptotically autonomous systems with constraints
On the Alekseev-Gröbner formula in Banach spaces
1. | Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Zürich, Switzerland |
2. | Institute of Mathematics, Faculty of Mathematics and Natural Sciences, University of Kassel, Kassel, Germany |
The Alekseev-Gröbner formula is a well known tool in numerical analysis for describing the effect that a perturbation of an ordinary differential equation (ODE) has on its solution. In this article we provide an extension of the Alekseev-Gröbner formula for Banach space valued ODEs under, loosely speaking, mild conditions on the perturbation of the considered ODEs.
References:
[1] |
V. M. Alekseev,
An estimate for the perturbations of the solutions of ordinary differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1961), 28-36.
|
[2] |
R. Coleman, Calculus on Normed Vector Spaces, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3894-6. |
[3] |
A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second ed., Universitext, Springer, Cham, 2014.
doi: 10.1007/978-3-319-05792-7. |
[4] |
B. Driver, Analysis Tools with Applications, Preprint, 2003. Available online: http://www.math.ucsd.edu/~ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf. |
[5] |
L. C. Evans, Partial Differential Equations, Second ed., Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[6] |
W. Gröbner, Die Lie-Reihen und ihre Anwendungen, Mathematische Monographien, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960. |
[7] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I, Second ed., Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. Nonstiff problems.
doi: 10.1007%2F978-3-540-78862-1. |
[8] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Second ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511995569.![]() ![]() ![]() |
[9] |
A. Iserles and G. Söderlind,
Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), 97-112.
doi: 10.1006/jcom.1993.1007. |
[10] |
A. Jentzen, D. Salimova and T. Welti,
Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, J. Math. Anal. Appl., 469 (2019), 661-704.
doi: 10.1016/j.jmaa.2018.09.032. |
[11] |
G. Ladas, G. Ladde and V. Lakshmikantham,
On some fundamental properties of solutions of differential equations in Banach spaces, Ann. Mat. Pura Appl. (4), 95 (1973), 255-267.
doi: 10.1007/BF02410719. |
[12] |
J. Niesen,
A priori estimates for the global error committed by Runge-Kutta methods for a nonlinear oscillator, LMS J. Comput. Math., 6 (2003), 18-28.
doi: 10.1112/S1461157000000358. |
[13] |
C. Prévøt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007.
doi: 10.1007%2F978-3-540-70781-3. |
[14] |
W. Rudin, Principles of Mathematical Analysis, Third ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. |
show all references
This paper is dedicated to Peter Kloeden on the occasion of his 70th birthday
References:
[1] |
V. M. Alekseev,
An estimate for the perturbations of the solutions of ordinary differential equations, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1961), 28-36.
|
[2] |
R. Coleman, Calculus on Normed Vector Spaces, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3894-6. |
[3] |
A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second ed., Universitext, Springer, Cham, 2014.
doi: 10.1007/978-3-319-05792-7. |
[4] |
B. Driver, Analysis Tools with Applications, Preprint, 2003. Available online: http://www.math.ucsd.edu/~ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf. |
[5] |
L. C. Evans, Partial Differential Equations, Second ed., Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[6] |
W. Gröbner, Die Lie-Reihen und ihre Anwendungen, Mathematische Monographien, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960. |
[7] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I, Second ed., Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. Nonstiff problems.
doi: 10.1007%2F978-3-540-78862-1. |
[8] |
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Second ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511995569.![]() ![]() ![]() |
[9] |
A. Iserles and G. Söderlind,
Global bounds on numerical error for ordinary differential equations, J. Complexity, 9 (1993), 97-112.
doi: 10.1006/jcom.1993.1007. |
[10] |
A. Jentzen, D. Salimova and T. Welti,
Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, J. Math. Anal. Appl., 469 (2019), 661-704.
doi: 10.1016/j.jmaa.2018.09.032. |
[11] |
G. Ladas, G. Ladde and V. Lakshmikantham,
On some fundamental properties of solutions of differential equations in Banach spaces, Ann. Mat. Pura Appl. (4), 95 (1973), 255-267.
doi: 10.1007/BF02410719. |
[12] |
J. Niesen,
A priori estimates for the global error committed by Runge-Kutta methods for a nonlinear oscillator, LMS J. Comput. Math., 6 (2003), 18-28.
doi: 10.1112/S1461157000000358. |
[13] |
C. Prévøt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007.
doi: 10.1007%2F978-3-540-70781-3. |
[14] |
W. Rudin, Principles of Mathematical Analysis, Third ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. |
[1] |
Savin Treanţă. On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces. Evolution Equations and Control Theory, 2022, 11 (3) : 827-836. doi: 10.3934/eect.2021027 |
[2] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[3] |
Ismara Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045 |
[4] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control and Related Fields, 2022, 12 (1) : 245-273. doi: 10.3934/mcrf.2021021 |
[5] |
Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012 |
[6] |
Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006 |
[7] |
Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945 |
[8] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[9] |
Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207 |
[10] |
Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems and Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567 |
[11] |
Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407 |
[12] |
Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149 |
[13] |
Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83 |
[14] |
Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379 |
[15] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066 |
[16] |
David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014 |
[17] |
Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232 |
[18] |
Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081 |
[19] |
Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046 |
[20] |
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]