
-
Previous Article
Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity
- DCDS-B Home
- This Issue
-
Next Article
Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term
A Max-Cut approximation using a graph based MBO scheme
School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham, United Kingdom, NG7 2RD |
The Max-Cut problem is a well known combinatorial optimization problem. In this paper we describe a fast approximation method. Given a graph $ G $, we want to find a cut whose size is maximal among all possible cuts. A cut is a partition of the vertex set of $ G $ into two disjoint subsets. For an unweighted graph, the size of the cut is the number of edges that have one vertex on either side of the partition; we also consider a weighted version of the problem where each edge contributes a nonnegative weight to the cut.
We introduce the signless Ginzburg–Landau functional and prove that this functional $ \Gamma $-converges to a Max-Cut objective functional. We approximately minimize this functional using a graph based signless Merriman–Bence–Osher (MBO) scheme, which uses a signless Laplacian. We derive a Lyapunov functional for the iterations of our signless MBO scheme. We show experimentally that on some classes of graphs the resulting algorithm produces more accurate maximum cut approximations than the current state-of-the-art approximation algorithm. One of our methods of minimizing the functional results in an algorithm with a time complexity of $ \mathcal{O}(|E|) $, where $ |E| $ is the total number of edges on $ G $.
References:
[1] |
University of Ioannina, Department of Computer Science and Engineering Teaching Resources, http://www.cs.uoi.gr/tsap/teaching/InformationNetworks/data-code.html., Accessed: 2017-03-13. |
[2] |
MIT Strategic Engineering Research Group: Matlab Tools for Network Analysis (2006-2011), http://strategic.mit.edu/docs/matlab_networks/random_modular_graph.m., Accessed: 2017-07-20. |
[3] |
SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, Accessed: 2017-07-01. |
[4] |
R. Albert, H. Jeong and A.-L. Barabási, Internet: Diameter of the world-wide web, Nature, (1999), 130–131. |
[5] |
S. M. Allen and J. W. Cahn,
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2. |
[6] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer Science & Business Media, 2008. |
[7] |
A.-L. Barabási, Scale-free networks: A decade and beyond, Science, (2002), 412–413. |
[8] |
A.-L. Barabási and E. Bonabeau, Scale-free, Scientific American, (2003), 50–59. |
[9] |
F. Barahona, M. Grötschel, M. Jünger and G. Reinhelt, An application of combinatorial optimization to statistical physics and circuit layout design, Scientific American, (2003), 50–59. |
[10] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM Journal on Numerical Analysis, 32 (1995), 484-500.
doi: 10.1137/0732020. |
[11] |
A. L. Bertozzi and A. Flenner,
Diffuse interface models on graphs for classification of high dimensional data, Multiscale Modeling & Simulation, 10 (2012), 1090-1118.
doi: 10.1137/11083109X. |
[12] |
B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0619-4. |
[13] |
A. Braides, Gamma-convergence for Beginners, Clarendon Press, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001.![]() ![]() ![]() |
[14] |
L. Bronsard and R. V. Kohn,
Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, Journal of Differential Equations, 90 (1991), 211-237.
doi: 10.1016/0022-0396(91)90147-2. |
[15] |
S. Bylka, A. Idzik and Z. Tuza,
Maximum cuts: Improvements and local algorithmic analogues of the Edwards–Erdös inequality, Discrete Mathematics, 194 (1999), 39-58.
doi: 10.1016/S0012-365X(98)00115-0. |
[16] |
L. Calatroni, Y. van Gennip, C.-B. Schönlieb, H. M. Rowland and A. Flenner,
Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, Journal of Mathematical Imaging and Vision, 57 (2017), 269-291.
doi: 10.1007/s10851-016-0678-0. |
[17] |
D. Calvetti, L. Reichel and D. C. Sorensen,
An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electronic Transactions on Numerical Analysis, 2 (1994), 1-21.
|
[18] |
F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997. |
[19] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, CUP Archive, 1965. |
[20] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[21] |
M. Desai and V. Rao,
A characterization of the smallest eigenvalue of a graph, Journal of Graph Theory, 18 (1994), 181-194.
doi: 10.1002/jgt.3190180210. |
[22] |
S. Esedo${\rm{\tilde g}}$lu and F. Otto,
Threshold dynamics for networks with arbitrary surface tensions, Communications on Pure and Applied Mathematics, 68 (2015), 808-864.
doi: 10.1002/cpa.21527. |
[23] |
J. G. F. Francis,
The QR transformation a unitary analogue to the LR transformation—Part 1, The Computer Journal, 4 (1961), 265-271.
doi: 10.1093/comjnl/4.3.265. |
[24] |
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco, LA: Freeman, 1979. |
[25] |
M. X. Goemans and D. P. Williamson,
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM (JACM), 42 (1995), 1115-1145.
doi: 10.1145/227683.227684. |
[26] |
G. H. Golub and C. F. van Loan, Matrix Computations, Fourth edition. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013. |
[27] |
M. Grötschel and W. R. Pulleyblank,
Weakly bipartite graphs and the Max-Cut problem, Operations Research Letters, 1 (1981), 23-27.
doi: 10.1016/0167-6377(81)90020-1. |
[28] |
J.-M. Guo,
A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra and Its Applications, 400 (2005), 61-66.
doi: 10.1016/j.laa.2004.10.022. |
[29] |
V. Guruswami,
Maximum cut on line and total graphs, Discrete Applied Mathematics, 92 (1999), 217-221.
doi: 10.1016/S0166-218X(99)00056-6. |
[30] |
F. Hadlock,
Finding a maximum cut of a planar graph in polynomial time, SIAM Journal on Computing, 4 (1975), 221-225.
doi: 10.1137/0204019. |
[31] |
Y. Haribara, S. Utsunomiya and Y. Yamamoto, A coherent Ising machine for MAX-CUT problems: Performance evaluation against semidefinite programming and simulated annealing, in Principles and Methods of Quantum Information Technologies Springer, 911 (2016), 251–262.
doi: 10.1007/978-4-431-55756-2_12. |
[32] |
M. Hein, J.-Y. Audibert and U. von Luxburg,
Graph Laplacians and their convergence on random neighborhood graphs, Journal of Machine Learning Research, 8 (2007), 1325-1368.
|
[33] |
H. Hu, T. Laurent, M. A. Porter and A. L. Bertozzi,
A method based on total variation for network modularity optimization using the MBO scheme, SIAM Journal on Applied Mathematics, 73 (2013), 2224-2246.
doi: 10.1137/130917387. |
[34] | |
[35] |
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Springer, (1972), 85–103. |
[36] |
S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the thirty-fourth Annual ACM Symposium on Theory of Computing, ACM, (2002), 767–775.
doi: 10.1145/509907.510017. |
[37] |
S. Khot, G. Kindler, E. Mossel and R. O'Donnell,
Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM Journal on Computing, 37 (2007), 319-357.
doi: 10.1137/S0097539705447372. |
[38] |
J. B. Lasserre,
A MAX-CUT formulation of 0/1 programs, Operations Research Letters, 44 (2016), 158-164.
doi: 10.1016/j.orl.2015.12.014. |
[39] |
R. B. Lehoucq and D. C. Sorensen,
Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 789-821.
doi: 10.1137/S0895479895281484. |
[40] |
E. Merkurjev, T. Kostic and A. L. Bertozzi,
An MBO scheme on graphs for classification and image processing, SIAM Journal on Imaging Sciences, 6 (2013), 1903-1930.
doi: 10.1137/120886935. |
[41] |
B. Merriman, J. Bence and S. Osher, Diffusion Generated Motion by Mean Curvature, UCLA Department of Mathematics CAM report CAM 06–32, 1992. |
[42] |
B. Merriman, J. Bence and S. Osher, Diffusion generated motion by mean curvature, AMS Selected Letters, Crystal Grower's Workshop, (1993), 73–83. |
[43] |
H. D. Mittelmann, The state-of-the-art in conic optimization software, in Handbook on Semidefinite, Conic and Polynomial Optimization Springer, 166 (2012), 671–686.
doi: 10.1007/978-1-4614-0769-0_23. |
[44] |
L. Modica and S. Mortola,
Un esempio di $\Gamma^-$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.
|
[45] |
L. Modica,
The gradient theory of phase transitions and the minimal interface criterion, Archive for Rational Mechanics and Analysis, 98 (1987), 123-142.
doi: 10.1007/BF00251230. |
[46] |
B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, Volume 2, Wiley, (1991), 871–898. |
[47] |
R. J. Radke, A Matlab Implementation of the Implicitly Restarted Arnoldi Method for Solving Large-scale Eigenvalue Problems, Masters thesis, Rice University, 1996. |
[48] |
W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1964. |
[49] |
J.-L. Shu, Y. Hong and K. Wen-Ren,
A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra and Its Applications, 347 (2002), 123-129.
doi: 10.1016/S0024-3795(01)00548-1. |
[50] |
D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Parallel Numerical Algorithms, Springer, 4 (1997), 119–165.
doi: 10.1007/978-94-011-5412-3_5. |
[51] |
J. A. Soto,
Improved analysis of a Max-Cut algorithm based on spectral partitioning, SIAM Journal on Discrete Mathematics, 29 (2015), 259-268.
doi: 10.1137/14099098X. |
[52] |
L. Trevisan, G. B. Sorkin, M. Sudan and D. P. Williamson,
Gadgets, approximation, and linear programming, SIAM Journal on Computing, 29 (2000), 2074-2097.
doi: 10.1137/S0097539797328847. |
[53] |
L. Trevisan,
Max-cut and the smallest eigenvalue, SIAM Journal on Computing, 41 (2012), 1769-1786.
doi: 10.1137/090773714. |
[54] |
R. H. Tütüncü, K.-C. Toh and M. Todd,
Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming, 95 (2003), 189-217.
doi: 10.1007/s10107-002-0347-5. |
[55] |
Y. van Gennip and A. L. Bertozzi,
$\Gamma$-convergence of graph Ginzburg-Landau functionals, Advances in Differential Equations, 17 (2012), 1115-1180.
|
[56] |
Y. van Gennip, N. Guillen, B. Osting and A. L. Bertozzi,
Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan Journal of Mathematics, 82 (2014), 3-65.
doi: 10.1007/s00032-014-0216-8. |
[57] |
Y. van Gennip, An MBO scheme for minimizing the graph Ohta–Kawasaki functional, Journal Of Nonlinear Science, 2018. |
[58] |
U. von Luxburg,
A tutorial on spectral clustering, Statistics and computing, 17 (2007), 395-416.
doi: 10.1007/s11222-007-9033-z. |
[59] |
X.-D. Zhang,
The signless Laplacian spectral radius of graphs with given degree sequences, Discrete Applied Mathematics, 157 (2009), 2928-2937.
doi: 10.1016/j.dam.2009.02.022. |
show all references
References:
[1] |
University of Ioannina, Department of Computer Science and Engineering Teaching Resources, http://www.cs.uoi.gr/tsap/teaching/InformationNetworks/data-code.html., Accessed: 2017-03-13. |
[2] |
MIT Strategic Engineering Research Group: Matlab Tools for Network Analysis (2006-2011), http://strategic.mit.edu/docs/matlab_networks/random_modular_graph.m., Accessed: 2017-07-20. |
[3] |
SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, Accessed: 2017-07-01. |
[4] |
R. Albert, H. Jeong and A.-L. Barabási, Internet: Diameter of the world-wide web, Nature, (1999), 130–131. |
[5] |
S. M. Allen and J. W. Cahn,
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2. |
[6] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer Science & Business Media, 2008. |
[7] |
A.-L. Barabási, Scale-free networks: A decade and beyond, Science, (2002), 412–413. |
[8] |
A.-L. Barabási and E. Bonabeau, Scale-free, Scientific American, (2003), 50–59. |
[9] |
F. Barahona, M. Grötschel, M. Jünger and G. Reinhelt, An application of combinatorial optimization to statistical physics and circuit layout design, Scientific American, (2003), 50–59. |
[10] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM Journal on Numerical Analysis, 32 (1995), 484-500.
doi: 10.1137/0732020. |
[11] |
A. L. Bertozzi and A. Flenner,
Diffuse interface models on graphs for classification of high dimensional data, Multiscale Modeling & Simulation, 10 (2012), 1090-1118.
doi: 10.1137/11083109X. |
[12] |
B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0619-4. |
[13] |
A. Braides, Gamma-convergence for Beginners, Clarendon Press, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001.![]() ![]() ![]() |
[14] |
L. Bronsard and R. V. Kohn,
Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, Journal of Differential Equations, 90 (1991), 211-237.
doi: 10.1016/0022-0396(91)90147-2. |
[15] |
S. Bylka, A. Idzik and Z. Tuza,
Maximum cuts: Improvements and local algorithmic analogues of the Edwards–Erdös inequality, Discrete Mathematics, 194 (1999), 39-58.
doi: 10.1016/S0012-365X(98)00115-0. |
[16] |
L. Calatroni, Y. van Gennip, C.-B. Schönlieb, H. M. Rowland and A. Flenner,
Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, Journal of Mathematical Imaging and Vision, 57 (2017), 269-291.
doi: 10.1007/s10851-016-0678-0. |
[17] |
D. Calvetti, L. Reichel and D. C. Sorensen,
An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electronic Transactions on Numerical Analysis, 2 (1994), 1-21.
|
[18] |
F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997. |
[19] |
R. Courant and D. Hilbert, Methods of Mathematical Physics, CUP Archive, 1965. |
[20] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[21] |
M. Desai and V. Rao,
A characterization of the smallest eigenvalue of a graph, Journal of Graph Theory, 18 (1994), 181-194.
doi: 10.1002/jgt.3190180210. |
[22] |
S. Esedo${\rm{\tilde g}}$lu and F. Otto,
Threshold dynamics for networks with arbitrary surface tensions, Communications on Pure and Applied Mathematics, 68 (2015), 808-864.
doi: 10.1002/cpa.21527. |
[23] |
J. G. F. Francis,
The QR transformation a unitary analogue to the LR transformation—Part 1, The Computer Journal, 4 (1961), 265-271.
doi: 10.1093/comjnl/4.3.265. |
[24] |
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco, LA: Freeman, 1979. |
[25] |
M. X. Goemans and D. P. Williamson,
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM (JACM), 42 (1995), 1115-1145.
doi: 10.1145/227683.227684. |
[26] |
G. H. Golub and C. F. van Loan, Matrix Computations, Fourth edition. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013. |
[27] |
M. Grötschel and W. R. Pulleyblank,
Weakly bipartite graphs and the Max-Cut problem, Operations Research Letters, 1 (1981), 23-27.
doi: 10.1016/0167-6377(81)90020-1. |
[28] |
J.-M. Guo,
A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra and Its Applications, 400 (2005), 61-66.
doi: 10.1016/j.laa.2004.10.022. |
[29] |
V. Guruswami,
Maximum cut on line and total graphs, Discrete Applied Mathematics, 92 (1999), 217-221.
doi: 10.1016/S0166-218X(99)00056-6. |
[30] |
F. Hadlock,
Finding a maximum cut of a planar graph in polynomial time, SIAM Journal on Computing, 4 (1975), 221-225.
doi: 10.1137/0204019. |
[31] |
Y. Haribara, S. Utsunomiya and Y. Yamamoto, A coherent Ising machine for MAX-CUT problems: Performance evaluation against semidefinite programming and simulated annealing, in Principles and Methods of Quantum Information Technologies Springer, 911 (2016), 251–262.
doi: 10.1007/978-4-431-55756-2_12. |
[32] |
M. Hein, J.-Y. Audibert and U. von Luxburg,
Graph Laplacians and their convergence on random neighborhood graphs, Journal of Machine Learning Research, 8 (2007), 1325-1368.
|
[33] |
H. Hu, T. Laurent, M. A. Porter and A. L. Bertozzi,
A method based on total variation for network modularity optimization using the MBO scheme, SIAM Journal on Applied Mathematics, 73 (2013), 2224-2246.
doi: 10.1137/130917387. |
[34] | |
[35] |
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Springer, (1972), 85–103. |
[36] |
S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the thirty-fourth Annual ACM Symposium on Theory of Computing, ACM, (2002), 767–775.
doi: 10.1145/509907.510017. |
[37] |
S. Khot, G. Kindler, E. Mossel and R. O'Donnell,
Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM Journal on Computing, 37 (2007), 319-357.
doi: 10.1137/S0097539705447372. |
[38] |
J. B. Lasserre,
A MAX-CUT formulation of 0/1 programs, Operations Research Letters, 44 (2016), 158-164.
doi: 10.1016/j.orl.2015.12.014. |
[39] |
R. B. Lehoucq and D. C. Sorensen,
Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 789-821.
doi: 10.1137/S0895479895281484. |
[40] |
E. Merkurjev, T. Kostic and A. L. Bertozzi,
An MBO scheme on graphs for classification and image processing, SIAM Journal on Imaging Sciences, 6 (2013), 1903-1930.
doi: 10.1137/120886935. |
[41] |
B. Merriman, J. Bence and S. Osher, Diffusion Generated Motion by Mean Curvature, UCLA Department of Mathematics CAM report CAM 06–32, 1992. |
[42] |
B. Merriman, J. Bence and S. Osher, Diffusion generated motion by mean curvature, AMS Selected Letters, Crystal Grower's Workshop, (1993), 73–83. |
[43] |
H. D. Mittelmann, The state-of-the-art in conic optimization software, in Handbook on Semidefinite, Conic and Polynomial Optimization Springer, 166 (2012), 671–686.
doi: 10.1007/978-1-4614-0769-0_23. |
[44] |
L. Modica and S. Mortola,
Un esempio di $\Gamma^-$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.
|
[45] |
L. Modica,
The gradient theory of phase transitions and the minimal interface criterion, Archive for Rational Mechanics and Analysis, 98 (1987), 123-142.
doi: 10.1007/BF00251230. |
[46] |
B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, Volume 2, Wiley, (1991), 871–898. |
[47] |
R. J. Radke, A Matlab Implementation of the Implicitly Restarted Arnoldi Method for Solving Large-scale Eigenvalue Problems, Masters thesis, Rice University, 1996. |
[48] |
W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1964. |
[49] |
J.-L. Shu, Y. Hong and K. Wen-Ren,
A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra and Its Applications, 347 (2002), 123-129.
doi: 10.1016/S0024-3795(01)00548-1. |
[50] |
D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Parallel Numerical Algorithms, Springer, 4 (1997), 119–165.
doi: 10.1007/978-94-011-5412-3_5. |
[51] |
J. A. Soto,
Improved analysis of a Max-Cut algorithm based on spectral partitioning, SIAM Journal on Discrete Mathematics, 29 (2015), 259-268.
doi: 10.1137/14099098X. |
[52] |
L. Trevisan, G. B. Sorkin, M. Sudan and D. P. Williamson,
Gadgets, approximation, and linear programming, SIAM Journal on Computing, 29 (2000), 2074-2097.
doi: 10.1137/S0097539797328847. |
[53] |
L. Trevisan,
Max-cut and the smallest eigenvalue, SIAM Journal on Computing, 41 (2012), 1769-1786.
doi: 10.1137/090773714. |
[54] |
R. H. Tütüncü, K.-C. Toh and M. Todd,
Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming, 95 (2003), 189-217.
doi: 10.1007/s10107-002-0347-5. |
[55] |
Y. van Gennip and A. L. Bertozzi,
$\Gamma$-convergence of graph Ginzburg-Landau functionals, Advances in Differential Equations, 17 (2012), 1115-1180.
|
[56] |
Y. van Gennip, N. Guillen, B. Osting and A. L. Bertozzi,
Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan Journal of Mathematics, 82 (2014), 3-65.
doi: 10.1007/s00032-014-0216-8. |
[57] |
Y. van Gennip, An MBO scheme for minimizing the graph Ohta–Kawasaki functional, Journal Of Nonlinear Science, 2018. |
[58] |
U. von Luxburg,
A tutorial on spectral clustering, Statistics and computing, 17 (2007), 395-416.
doi: 10.1007/s11222-007-9033-z. |
[59] |
X.-D. Zhang,
The signless Laplacian spectral radius of graphs with given degree sequences, Discrete Applied Mathematics, 157 (2009), 2928-2937.
doi: 10.1016/j.dam.2009.02.022. |
















Graph | GW | ||||||
0.20 | 1.58 | 0.34 | 1.52 | 0.56 | 1.06 | 5.25 | |
8.04 | 172.91 | 13.33 | 181.40 | 6.40 | 172.73 | 55.36 | |
4.38 | 16.96 | 6.37 | 14.95 | 24.99 | 6.97 | 257.09 |
Graph | GW | ||||||
0.20 | 1.58 | 0.34 | 1.52 | 0.56 | 1.06 | 5.25 | |
8.04 | 172.91 | 13.33 | 181.40 | 6.40 | 172.73 | 55.36 | |
4.38 | 16.96 | 6.37 | 14.95 | 24.99 | 6.97 | 257.09 |
Graph | GW Best | GW Avg | GW Least | GW Time |
AS1 | 22864 | 22346.26 | 20546 | 2324.98 |
AS2 | 13328 | 13039.10 | 12048 | 594.29 |
AS3 | 15240 | 14961.56 | 14050 | 826.65 |
AS4 | 15328 | 15015.34 | 14072 | 832.28 |
AS5 | 14190 | 13810.82 | 12922 | 721.51 |
AS6 | 18191 | 17851.24 | 16483 | 1368.35 |
AS7 | 22901 | 22421.80 | 21244 | 2321.34 |
AS8 | 23170 | 22593.10 | 21110 | 2613.62 |
GNutella09 | 20658 | 20242.02 | 18815 | 1095.04 |
Wiki-Vote | 73363 | 71510 | 62886 | 1074.98 |
Graph | GW Best | GW Avg | GW Least | GW Time |
AS1 | 22864 | 22346.26 | 20546 | 2324.98 |
AS2 | 13328 | 13039.10 | 12048 | 594.29 |
AS3 | 15240 | 14961.56 | 14050 | 826.65 |
AS4 | 15328 | 15015.34 | 14072 | 832.28 |
AS5 | 14190 | 13810.82 | 12922 | 721.51 |
AS6 | 18191 | 17851.24 | 16483 | 1368.35 |
AS7 | 22901 | 22421.80 | 21244 | 2321.34 |
AS8 | 23170 | 22593.10 | 21110 | 2613.62 |
GNutella09 | 20658 | 20242.02 | 18815 | 1095.04 |
Wiki-Vote | 73363 | 71510 | 62886 | 1074.98 |
Graph | ||||
1000 | 4919 | 1 | 21 | |
1000 | 4939 | 2 | 21 | |
2500 | 1248937 | 910 | 1079 | |
2500 | 1251182 | 904 | 1081 | |
4962 | 12646 | 1 | 16 | |
4969 | 12642 | 1 | 16 | |
Graph | | | | |
AS1 | 12694 | 26559 | 1 | 2566 |
AS2 | 7690 | 15413 | 1 | 1713 |
AS3 | 8689 | 17709 | 1 | 1911 |
AS4 | 8904 | 17653 | 1 | 1921 |
GNutella09 | 8114 | 26013 | 1 | 102 |
Wiki-Vote | 7115 | 100762 | 1 | 1065 |
Graph | ||||
1000 | 4919 | 1 | 21 | |
1000 | 4939 | 2 | 21 | |
2500 | 1248937 | 910 | 1079 | |
2500 | 1251182 | 904 | 1081 | |
4962 | 12646 | 1 | 16 | |
4969 | 12642 | 1 | 16 | |
Graph | | | | |
AS1 | 12694 | 26559 | 1 | 2566 |
AS2 | 7690 | 15413 | 1 | 1713 |
AS3 | 8689 | 17709 | 1 | 1911 |
AS4 | 8904 | 17653 | 1 | 1921 |
GNutella09 | 8114 | 26013 | 1 | 102 |
Wiki-Vote | 7115 | 100762 | 1 | 1065 |
Graph | ||||
AS1 | 22744 | 22542.20 | 22183 | |
AS2 | 13249 | 13153.72 | 13054 | |
AS3 | 15118 | 15027.22 | 14907 | 4.73 |
AS4 | 15194 | 15143.44 | 15042 | |
AS5 | 14080 | 13988.90 | 13928 | |
AS6 | 18053 | 17964.74 | 17876 | 10.06 |
AS7 | 22741 | 22535.00 | 22150 | 17.82 |
AS8 | 22990 | 22720.36 | 22334 | 17.22 |
GNutella09 | 20280 | 20143.74 | 19983 | 8.16 |
WikiVote | 72981 | 72856.40 | 72744 | 2.46 |
Graph | | | | |
AS1 | 22798 | 22670.76 | 22268 | 23.62 |
AS2 | 13281 | 13199.72 | 13120 | 8.76 |
AS3 | 15175 | 15095.46 | 15007 | 9.95 |
AS4 | 15270 | 15202.70 | 15117 | 10.88 |
AS5 | 14120 | 14020.62 | 13944 | 9.50 |
AS6 | 18134 | 18034.10 | 17933 | 16.50 |
AS7 | 22826 | 22696.42 | 22525 | 25.78 |
AS8 | 23070 | 22951.54 | 22550 | 25.38 |
GNutella09 | 20437 | 20361.92 | 20295 | 17.14 |
WikiVote | 73159 | 73126.34 | 73086 | 9.06 |
Graph | ||||
AS1 | 22744 | 22542.20 | 22183 | |
AS2 | 13249 | 13153.72 | 13054 | |
AS3 | 15118 | 15027.22 | 14907 | 4.73 |
AS4 | 15194 | 15143.44 | 15042 | |
AS5 | 14080 | 13988.90 | 13928 | |
AS6 | 18053 | 17964.74 | 17876 | 10.06 |
AS7 | 22741 | 22535.00 | 22150 | 17.82 |
AS8 | 22990 | 22720.36 | 22334 | 17.22 |
GNutella09 | 20280 | 20143.74 | 19983 | 8.16 |
WikiVote | 72981 | 72856.40 | 72744 | 2.46 |
Graph | | | | |
AS1 | 22798 | 22670.76 | 22268 | 23.62 |
AS2 | 13281 | 13199.72 | 13120 | 8.76 |
AS3 | 15175 | 15095.46 | 15007 | 9.95 |
AS4 | 15270 | 15202.70 | 15117 | 10.88 |
AS5 | 14120 | 14020.62 | 13944 | 9.50 |
AS6 | 18134 | 18034.10 | 17933 | 16.50 |
AS7 | 22826 | 22696.42 | 22525 | 25.78 |
AS8 | 23070 | 22951.54 | 22550 | 25.38 |
GNutella09 | 20437 | 20361.92 | 20295 | 17.14 |
WikiVote | 73159 | 73126.34 | 73086 | 9.06 |
Graph | ||||
AS1 | 22809 | 22620.8 | 17.83 | |
AS2 | 13271 | 13178.86 | 13103 | 4.12 |
AS3 | 15166 | 15082.1 | 14992 | |
AS4 | 15237 | 15166.24 | 15077 | 5.78 |
AS5 | 14075 | 14011.96 | 13911 | 5.47 |
AS6 | 18088 | 17968.04 | 17859 | |
AS7 | 22822 | 22629.66 | 22218 | |
AS8 | 23061 | 22884.8 | 22547 | |
GNutella09 | 20282 | 20186.32 | 20101 | |
WikiVote | 73169 | 73003.44 | 72917 | |
Graph | | | | |
AS1 | 22789 | 22629.62 | 22261 | 27.63 |
AS2 | 13256 | 13176.64 | 13094 | 9.09 |
AS3 | 15139 | 15059.54 | 14967 | 10.24 |
AS4 | 15234 | 15159.76 | 15079 | 11.57 |
AS5 | 14096 | 14011.9 | 13930 | 10.47 |
AS6 | 18088 | 17994.66 | 17876 | 16.12 |
AS7 | 22823 | 22639.58 | 22237 | 24.5 |
AS8 | 23036 | 22865 | 22440 | 25.08 |
GNutella09 | 20397 | 20332.28 | 20170 | 18.75 |
WikiVote | 72993 | 72772.26 | 72549 | 9.00 |
Graph | ||||
AS1 | 22809 | 22620.8 | 17.83 | |
AS2 | 13271 | 13178.86 | 13103 | 4.12 |
AS3 | 15166 | 15082.1 | 14992 | |
AS4 | 15237 | 15166.24 | 15077 | 5.78 |
AS5 | 14075 | 14011.96 | 13911 | 5.47 |
AS6 | 18088 | 17968.04 | 17859 | |
AS7 | 22822 | 22629.66 | 22218 | |
AS8 | 23061 | 22884.8 | 22547 | |
GNutella09 | 20282 | 20186.32 | 20101 | |
WikiVote | 73169 | 73003.44 | 72917 | |
Graph | | | | |
AS1 | 22789 | 22629.62 | 22261 | 27.63 |
AS2 | 13256 | 13176.64 | 13094 | 9.09 |
AS3 | 15139 | 15059.54 | 14967 | 10.24 |
AS4 | 15234 | 15159.76 | 15079 | 11.57 |
AS5 | 14096 | 14011.9 | 13930 | 10.47 |
AS6 | 18088 | 17994.66 | 17876 | 16.12 |
AS7 | 22823 | 22639.58 | 22237 | 24.5 |
AS8 | 23036 | 22865 | 22440 | 25.08 |
GNutella09 | 20397 | 20332.28 | 20170 | 18.75 |
WikiVote | 72993 | 72772.26 | 72549 | 9.00 |
Graph | ||||
AS1 | 22578 | 22303.10 | 21844 | 297.79 |
AS2 | 13081 | 12935.80 | 12763 | 62.41 |
AS3 | 14995 | 14869.52 | 14702 | 90.32 |
AS4 | 15097 | 14994.92 | 14885 | 88.53 |
AS5 | 13952 | 13795.24 | 13561 | 70.81 |
AS6 | 17836 | 17672.50 | 17527 | 149.60 |
AS7 | 22571 | 22328.18 | 21932 | 294.26 |
AS8 | 22824 | 22585.88 | 22075 | 287.79 |
GNutella09 | 19079 | 18419.36 | 17951 | 72.03 |
WikiVote | 65504 | 60599.74 | 56917 | 46.11 |
Graph | ||||
AS1 | 22578 | 22303.10 | 21844 | 297.79 |
AS2 | 13081 | 12935.80 | 12763 | 62.41 |
AS3 | 14995 | 14869.52 | 14702 | 90.32 |
AS4 | 15097 | 14994.92 | 14885 | 88.53 |
AS5 | 13952 | 13795.24 | 13561 | 70.81 |
AS6 | 17836 | 17672.50 | 17527 | 149.60 |
AS7 | 22571 | 22328.18 | 21932 | 294.26 |
AS8 | 22824 | 22585.88 | 22075 | 287.79 |
GNutella09 | 19079 | 18419.36 | 17951 | 72.03 |
WikiVote | 65504 | 60599.74 | 56917 | 46.11 |
Graph | GW | ||||||
0.80 | 10.43 | 0.79 | 10.26 | 4.36 | 6.13 | 56.30 | |
4.05 | 30.46 | 4.49 | 29.52 | 16.26 | 18.19 | 248.25 | |
49.98 | 266.10 | 52.85 | 266.40 | 210.94 | 194.52 | 3893.87 |
Graph | GW | ||||||
0.80 | 10.43 | 0.79 | 10.26 | 4.36 | 6.13 | 56.30 | |
4.05 | 30.46 | 4.49 | 29.52 | 16.26 | 18.19 | 248.25 | |
49.98 | 266.10 | 52.85 | 266.40 | 210.94 | 194.52 | 3893.87 |
Graph | ||||
W1 | 3413.96 | 3345.32 | 3276.63 | 0.61 |
W2 | 34784.30 | 34304.33 | 33627.16 | 0.51 |
W3 | 1602346.52 | 1600022.33 | 1595791.12 | |
W4 | 320251.52 | 319940.38 | 319663.40 | |
W5 | 4793.44 | 4761.72 | 4715.51 | 18.66 |
W6 | 71219.49 | 70427.83 | 69643.31 | 18.93 |
W7 | 239991.72 | 237647.45 | 235617.15 | 19.17 |
W8 | 134097.55 | 131088.97 | 126123.70 | 272.56 |
W9 | 27528.99 | 26554.77 | 25501.34 | 69.63 |
W10 | 90271.70 | 88031.84 | 83130.60 | 264.89 |
Graph | | | | |
W1 | 3524.24 | 3456.55 | 3406.93 | 1.03 |
W2 | 35664.18 | 35040.71 | 34383.57 | 1.03 |
W3 | 1605419.97 | 1602251.82 | 1597064.59 | 203.27 |
W4 | 320321.63 | 319809.73 | 319237.08 | 192.51 |
W5 | 5017.66 | 4983.90 | 4954.63 | 7.76 |
W6 | 74195.87 | 73688.97 | 73231.67 | 7.33 |
W7 | 251330.73 | 249754.88 | 248091.06 | 7.51 |
W8 | - | - | - | - |
W9 | - | - | - | - |
W10 | - | - | - | - |
Graph | ||||
W1 | 3413.96 | 3345.32 | 3276.63 | 0.61 |
W2 | 34784.30 | 34304.33 | 33627.16 | 0.51 |
W3 | 1602346.52 | 1600022.33 | 1595791.12 | |
W4 | 320251.52 | 319940.38 | 319663.40 | |
W5 | 4793.44 | 4761.72 | 4715.51 | 18.66 |
W6 | 71219.49 | 70427.83 | 69643.31 | 18.93 |
W7 | 239991.72 | 237647.45 | 235617.15 | 19.17 |
W8 | 134097.55 | 131088.97 | 126123.70 | 272.56 |
W9 | 27528.99 | 26554.77 | 25501.34 | 69.63 |
W10 | 90271.70 | 88031.84 | 83130.60 | 264.89 |
Graph | | | | |
W1 | 3524.24 | 3456.55 | 3406.93 | 1.03 |
W2 | 35664.18 | 35040.71 | 34383.57 | 1.03 |
W3 | 1605419.97 | 1602251.82 | 1597064.59 | 203.27 |
W4 | 320321.63 | 319809.73 | 319237.08 | 192.51 |
W5 | 5017.66 | 4983.90 | 4954.63 | 7.76 |
W6 | 74195.87 | 73688.97 | 73231.67 | 7.33 |
W7 | 251330.73 | 249754.88 | 248091.06 | 7.51 |
W8 | - | - | - | - |
W9 | - | - | - | - |
W10 | - | - | - | - |
Graph | GW Best | GW Avg | GW Least | GW Time |
W1 | 3585.17 | 3535.63 | 3494.26 | 5.74 |
W2 | 36101.30 | 35698.47 | 35151.60 | 6.07 |
W3 | 1620705.80 | 1618813.52 | 1616502.33 | 43.58 |
W4 | 323573.40 | 323275.84 | 322795.83 | 44.09 |
W5 | 5038.00 | 5000.74 | 4953.71 | 265.27 |
W6 | 74372.75 | 73852.36 | 73293.27 | 241.33 |
W7 | 251802.56 | 250316.08 | 248098.85 | 263.44 |
W8 | 138159.14 | 135899.20 | 129576.95 | 2629.60 |
W9 | 28705.35 | 28169.25 | 26422.54 | 689.16 |
W10 | 93547.26 | 91571.68 | 87487.99 | 2646.94 |
Graph | GW Best | GW Avg | GW Least | GW Time |
W1 | 3585.17 | 3535.63 | 3494.26 | 5.74 |
W2 | 36101.30 | 35698.47 | 35151.60 | 6.07 |
W3 | 1620705.80 | 1618813.52 | 1616502.33 | 43.58 |
W4 | 323573.40 | 323275.84 | 322795.83 | 44.09 |
W5 | 5038.00 | 5000.74 | 4953.71 | 265.27 |
W6 | 74372.75 | 73852.36 | 73293.27 | 241.33 |
W7 | 251802.56 | 250316.08 | 248098.85 | 263.44 |
W8 | 138159.14 | 135899.20 | 129576.95 | 2629.60 |
W9 | 28705.35 | 28169.25 | 26422.54 | 689.16 |
W10 | 93547.26 | 91571.68 | 87487.99 | 2646.94 |
Graph | ||||
W1 | 3612.00 | 3569.08 | 3537.10 | 0.47 |
W2 | 36487.51 | 36082.58 | 35687.87 | |
W3 | 1622125.53 | 8.09 | ||
W4 | 323926.34 | 323639.05 | 8.59 | |
W5 | 5054.26 | 5033.54 | 5010.38 | |
W6 | 74560.24 | 74218.26 | 73776.17 | |
W7 | 252448.52 | 251045.03 | 249459.89 | 4.18 |
W8 | 137202.14 | 135952.94 | 133480.08 | 16.17 |
W9 | 28351.01 | 28194.96 | 28009.15 | |
W10 | 92376.49 | 91570.35 | 90172.90 | 17.02 |
Graph | | | | |
W1 | 3622.58 | 3580.53 | 3548.82 | 1.41 |
W2 | 36530.25 | 36191.16 | 35928.56 | 1.67 |
W3 | 1603390.76 | 1600505.43 | 1596558.94 | 185.03 |
W4 | 320347.01 | 319612.93 | 318849.26 | 195.66 |
W5 | 5104.45 | 5081.95 | 5063.64 | 15.31 |
W6 | 75499.50 | 75175.73 | 74833.80 | 15.70 |
W7 | 255793.23 | 254569.97 | 253091.91 | 15.71 |
W8 | 137569.32 | 136896.1 | 136094.60 | 23.83 |
W9 | 28545.45 | 28369.43 | 28141.76 | 9.24 |
W10 | 93021.06 | 92489.04 | 91626.99 | 25.37 |
Graph | ||||
W1 | 3612.00 | 3569.08 | 3537.10 | 0.47 |
W2 | 36487.51 | 36082.58 | 35687.87 | |
W3 | 1622125.53 | 8.09 | ||
W4 | 323926.34 | 323639.05 | 8.59 | |
W5 | 5054.26 | 5033.54 | 5010.38 | |
W6 | 74560.24 | 74218.26 | 73776.17 | |
W7 | 252448.52 | 251045.03 | 249459.89 | 4.18 |
W8 | 137202.14 | 135952.94 | 133480.08 | 16.17 |
W9 | 28351.01 | 28194.96 | 28009.15 | |
W10 | 92376.49 | 91570.35 | 90172.90 | 17.02 |
Graph | | | | |
W1 | 3622.58 | 3580.53 | 3548.82 | 1.41 |
W2 | 36530.25 | 36191.16 | 35928.56 | 1.67 |
W3 | 1603390.76 | 1600505.43 | 1596558.94 | 185.03 |
W4 | 320347.01 | 319612.93 | 318849.26 | 195.66 |
W5 | 5104.45 | 5081.95 | 5063.64 | 15.31 |
W6 | 75499.50 | 75175.73 | 74833.80 | 15.70 |
W7 | 255793.23 | 254569.97 | 253091.91 | 15.71 |
W8 | 137569.32 | 136896.1 | 136094.60 | 23.83 |
W9 | 28545.45 | 28369.43 | 28141.76 | 9.24 |
W10 | 93021.06 | 92489.04 | 91626.99 | 25.37 |
Graph | ||||
Amazon0302 | 262111 | 899792 | 1 | 420 |
Amazon0601 | 403394 | 2443408 | 1 | 2752 |
GNutella31 | 62586 | 147892 | 1 | 95 |
PA RoadNet | 1088092 | 1541898 | 1 | 9 |
Email-Enron | 36692 | 183831 | 1 | 1383 |
BerkStan-Web | 685230 | 6649470 | 1 | 84290 |
Stanford | 281904 | 1992636 | 1 | 38625 |
WWW1999 | 325729 | 1090108 | 1 | 10721 |
Graph | ||||
Amazon0302 | 262111 | 899792 | 1 | 420 |
Amazon0601 | 403394 | 2443408 | 1 | 2752 |
GNutella31 | 62586 | 147892 | 1 | 95 |
PA RoadNet | 1088092 | 1541898 | 1 | 9 |
Email-Enron | 36692 | 183831 | 1 | 1383 |
BerkStan-Web | 685230 | 6649470 | 1 | 84290 |
Stanford | 281904 | 1992636 | 1 | 38625 |
WWW1999 | 325729 | 1090108 | 1 | 10721 |
Graph | ||||
Amazon0302 | 618942 | 618512.18 | 618030 | 0.49 |
Amazon0601 | 1580070 | 1576960.80 | 1571089 | 1.90 |
GNutella31 | 116552 | 116213.74 | 115916 | 0.06 |
PA RoadNet | 1380131 | 1379797.90 | 1379416 | 0.64 |
Email-Enron | 112665 | 111680.24 | 110279 | 0.02 |
BerkStan-Web | 5335813 | 5319662.06 | 5281630 | 0.83 |
Stanford | 1585802 | 1580445.14 | 1570469 | 0.47 |
WWW1999 | 813000 | 809329.52 | 806130 | 0.21 |
Graph | ||||
Amazon0302 | 618942 | 618512.18 | 618030 | 0.49 |
Amazon0601 | 1580070 | 1576960.80 | 1571089 | 1.90 |
GNutella31 | 116552 | 116213.74 | 115916 | 0.06 |
PA RoadNet | 1380131 | 1379797.90 | 1379416 | 0.64 |
Email-Enron | 112665 | 111680.24 | 110279 | 0.02 |
BerkStan-Web | 5335813 | 5319662.06 | 5281630 | 0.83 |
Stanford | 1585802 | 1580445.14 | 1570469 | 0.47 |
WWW1999 | 813000 | 809329.52 | 806130 | 0.21 |
Graph | ||||
W1 | 3601.29 | 3569.23 | 3545.85 | |
W2 | 36192.09 | 36059.80 | 35867.83 | 0.49 |
W3 | 1620484 | 1618809.76 | 8.40 | |
W4 | 323114.45 | 7.65 | ||
W5 | 5068.19 | 5041.94 | 5015.16 | 4.50 |
W6 | 74844.37 | 74505.45 | 73963.79 | 4.67 |
W7 | 253043.96 | 251668.30 | 250600.35 | |
W8 | 137195.52 | 136360.17 | 134856.06 | |
W9 | 28389.38 | 28227.09 | 28067.66 | 4.12 |
W10 | 92439.42 | 91952.98 | 90488.33 | |
Graph | | | | |
W1 | 3614.37 | 3577.56 | 3542.19 | 1.40 |
W2 | 36321.80 | 36150.05 | 35910.90 | 1.53 |
W3 | 1604257.12 | 1600145.68 | 1597577.4 | 187.88 |
W4 | 320691.88 | 319596.27 | 318900.13 | 199.01 |
W5 | 5096.55 | 5072.36 | 5041.89 | 15.9 |
W6 | 75456.87 | 75089.73 | 74745.17 | 18.09 |
W7 | 255316.85 | 253821.64 | 252527.13 | 15.48 |
W8 | 137282.02 | 136475.24 | 134333.1 | 24.51 |
W9 | 28445.94 | 28258.64 | 28101.22 | 9.18 |
W10 | 92731.62 | 92093.05 | 90448.61 | 24.36 |
Graph | ||||
W1 | 3601.29 | 3569.23 | 3545.85 | |
W2 | 36192.09 | 36059.80 | 35867.83 | 0.49 |
W3 | 1620484 | 1618809.76 | 8.40 | |
W4 | 323114.45 | 7.65 | ||
W5 | 5068.19 | 5041.94 | 5015.16 | 4.50 |
W6 | 74844.37 | 74505.45 | 73963.79 | 4.67 |
W7 | 253043.96 | 251668.30 | 250600.35 | |
W8 | 137195.52 | 136360.17 | 134856.06 | |
W9 | 28389.38 | 28227.09 | 28067.66 | 4.12 |
W10 | 92439.42 | 91952.98 | 90488.33 | |
Graph | | | | |
W1 | 3614.37 | 3577.56 | 3542.19 | 1.40 |
W2 | 36321.80 | 36150.05 | 35910.90 | 1.53 |
W3 | 1604257.12 | 1600145.68 | 1597577.4 | 187.88 |
W4 | 320691.88 | 319596.27 | 318900.13 | 199.01 |
W5 | 5096.55 | 5072.36 | 5041.89 | 15.9 |
W6 | 75456.87 | 75089.73 | 74745.17 | 18.09 |
W7 | 255316.85 | 253821.64 | 252527.13 | 15.48 |
W8 | 137282.02 | 136475.24 | 134333.1 | 24.51 |
W9 | 28445.94 | 28258.64 | 28101.22 | 9.18 |
W10 | 92731.62 | 92093.05 | 90448.61 | 24.36 |
Graph | |||
AS4 | 15276 | 15279 | 9259 |
AS8 | 23083 | 23033 | 13725 |
W9 | 28553.66 | 28485.28 | 17146.69 |
Graph | | | |
AS4 | 15196.52 | 15175.52 | 9124.68 |
AS8 | 22934.30 | 22844.16 | 13585.56 |
W9 | 28360.46 | 28294.40 | 16847.92 |
Graph | | | |
AS4 | 15124 | 15056 | 8964 |
AS8 | 22521 | 22454 | 13477 |
W9 | 28103.28 | 28075.62 | 16521.43 |
Graph | | | |
AS4 | 47.83 | 50.94 | 7.47 |
AS8 | 105.22 | 114.74 | 11.48 |
W9 | 38.61 | 42.57 | 5.26 |
Graph | |||
AS4 | 15276 | 15279 | 9259 |
AS8 | 23083 | 23033 | 13725 |
W9 | 28553.66 | 28485.28 | 17146.69 |
Graph | | | |
AS4 | 15196.52 | 15175.52 | 9124.68 |
AS8 | 22934.30 | 22844.16 | 13585.56 |
W9 | 28360.46 | 28294.40 | 16847.92 |
Graph | | | |
AS4 | 15124 | 15056 | 8964 |
AS8 | 22521 | 22454 | 13477 |
W9 | 28103.28 | 28075.62 | 16521.43 |
Graph | | | |
AS4 | 47.83 | 50.94 | 7.47 |
AS8 | 105.22 | 114.74 | 11.48 |
W9 | 38.61 | 42.57 | 5.26 |
Graph | ||||||
3.36 | 1.82 | 3.28 | 1.79 | 2.20 | 1.19 | |
62.97 | 44.23 | 62.16 | 44.18 | 41.53 | 24.01 |
Graph | ||||||
3.36 | 1.82 | 3.28 | 1.79 | 2.20 | 1.19 | |
62.97 | 44.23 | 62.16 | 44.18 | 41.53 | 24.01 |
[1] |
Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205 |
[2] |
Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345 |
[3] |
Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048 |
[4] |
Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713 |
[5] |
Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280 |
[6] |
N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476 |
[7] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
[8] |
Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507 |
[9] |
Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145 |
[10] |
Lu Zhang, Aihong Zou, Tao Yan, Ji Shu. Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 749-768. doi: 10.3934/dcdsb.2021063 |
[11] |
Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715 |
[12] |
Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121 |
[13] |
Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095 |
[14] |
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711 |
[15] |
Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181 |
[16] |
Dingshi Li, Lin Shi, Xiaohu Wang. Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5121-5148. doi: 10.3934/dcdsb.2019046 |
[17] |
Hong Lu, Mingji Zhang. Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3553-3576. doi: 10.3934/dcdsb.2020072 |
[18] |
Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100 |
[19] |
Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109 |
[20] |
Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]