November  2019, 24(11): 6297-6323. doi: 10.3934/dcdsb.2019140

Effects of migration on vector-borne diseases with forward and backward stage progression

Department of Mathematics & Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA 92831, USA

Received  August 2018 Revised  February 2019 Published  November 2019 Early access  July 2019

Is it possible to break the host-vector chain of transmission when there is an influx of infectious hosts into a naïve population and competent vector? To address this question, a class of vector-borne disease models with an arbitrary number of infectious stages that account for immigration of infective individuals is formulated. The proposed model accounts for forward and backward progression, capturing the mitigation and aggravation to and from any stages of the infection, respectively. The model has a rich dynamic, which depends on the patterns of infected immigrant influx into the host population and connectivity of the transfer between infectious classes. We provide conditions under which the answer of the initial question is positive.

Citation: Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6297-6323. doi: 10.3934/dcdsb.2019140
References:
[1]

N. BameS. BowongJ. MbangG. Sallet and J. Tewa, Global stability for seis models with n latent classes, Math. Biosci. Eng., 5 (2008), 20-33.  doi: 10.3934/mbe.2008.5.20.

[2]

E. D. Barnett and P. F. Walker, Role of immigrants and migrants in emerging infectious diseases, Medical Clinics of North America, 92 (2008), 1447-1458.  doi: 10.1016/j.mcna.2008.07.001.

[3]

M. Q. BenedictR. S. LevineW. A. Hawley and L. P. Lounibos, Spread of the tiger: Global risk of invasion by the mosquito aedes albopictus, Vector-borne and Zoonotic Diseases, 7 (2007), 76-85. 

[4]

D. BicharaA. Iggidr and L. Smith, Multi-stage vector-borne zoonoses models: A global analysis, Bulletin of Mathematical Biology, 80 (2018), 1810-1848.  doi: 10.1007/s11538-018-0435-1.

[5]

B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0619-4.

[6]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically Autonomous Epidemic Models, in Mathematical Population Dynamics: Analysis of Heterogeneity, Volume One: Theory of Epidemics, O. Arino, A. D.E., and M. Kimmel, eds., Wuerz, 1995.

[8]

Centers for Disease Control and Prevention, Illnesses from mosquito, tick, and flea bites increasing in the us, Centers for Disease Control and Prevention, https://www.cdc.gov/media/releases/2018/p0501-vs-vector-borne.html, (2018).

[9]

G. ChowellP. Diaz-DuenasJ. MillerA. Alcazar-VelazcoJ. HymanP. Fenimore and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Mathematical biosciences, 208 (2007), 571-589.  doi: 10.1016/j.mbs.2006.11.011.

[10]

G. Cruz-PachecoL. Esteva and C. Vargas, Control measures for chagas disease, Mathematical biosciences, 237 (2012), 49-60.  doi: 10.1016/j.mbs.2012.03.005.

[11]

L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151.  doi: 10.1016/S0025-5564(98)10003-2.

[12]

E. A. GouldP. GallianX. De Lamballerie and R. N. Charrel, First cases of autochthonous dengue fever and chikungunya fever in france: From bad dream to reality!, Clinical Microbiology and Infection, 16 (2010), 1702-1704.  doi: 10.1111/j.1469-0691.2010.03386.x.

[13]

M. Grandadam, V. Caro, S. Plumet, J.-M. Thiberge, Y. Souares, A.-B. Failloux, H. J. Tolou, M. Budelot, D. Cosserat, I. Leparc-Goffart and P. Desprès, Chikungunya virus, southeastern france, Emerging Infectious Diseases, 17 (2011), p. 910.

[14]

H. Guo and M. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.  doi: 10.3934/mbe.2006.3.513.

[15]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.  doi: 10.3934/dcdsb.2012.17.2413.

[16]

H. GuoM. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM Journal on applied mathematics, 72 (2012), 261-279.  doi: 10.1137/110827028.

[17]

J. M. HymanJ. Li and E. Stanley, The differential infectivity and staged progression models for the transmission of HIV., Math. Biosci., 155 (1999), 77-109.  doi: 10.1016/S0025-5564(98)10057-3.

[18]

M. Isaäcson, Airport malaria: A review, Bulletin of the World Health Organization, 67 (1989), p. 737.

[19]

T. L. Johnson, E. L. Landguth and E. F. Stone, Modeling relapsing disease dynamics in a host-vector community, PLoS Negl Trop Dis, 10 (2016), p. e0004428. doi: 10.1371/journal.pntd.0004428.

[20]

K. E. JonesN. G. PatelM. A. LevyA. StoreygardD. BalkJ. L. Gittleman and P. Daszak, Global trends in emerging infectious diseases, Nature, 451 (2008), 990-993.  doi: 10.1038/nature06536.

[21]

A. M. Kilpatrick and S. E. Randolph, Drivers, dynamics, and control of emerging vector-borne zoonotic diseases, The Lancet, 380 (2012), 1946-1955.  doi: 10.1016/S0140-6736(12)61151-9.

[22]

M. Li and J. S. Muldowney, On r.a. smith's automonmous convergence theorem, Rocky Mountain J. Math., 25 (1995), 365-379.  doi: 10.1216/rmjm/1181072289.

[23]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.  doi: 10.1016/0025-5564(95)92756-5.

[24]

C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1-16.  doi: 10.1016/S0025-5564(02)00149-9.

[25]

C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models, J. Dyn. Differ. Equations, 16 (2004), 139-166.  doi: 10.1023/B:JODY.0000041283.66784.3e.

[26]

C. J. Mitchell, Geographic spread of aedes albopictus and potential for involvement in arbovirus cycles in the mediterranean basin, Journal of Vector Ecology, 20 (1985), 44-58. 

[27]

J. Moon, Counting Labeled Trees, Canadian Math, Monographs, 1970.

[28]

C. PalmerE. LandguthE. Stone and T. Johnson, The dynamics of vector-borne relapsing diseases, Math. Biosci., 297 (2018), 32-42.  doi: 10.1016/j.mbs.2018.01.001.

[29]

M. Paty, C. Six, F. Charlet, G. Heuzé, A. Cochet, A. Wiegandt, J. Chappert, D. Dejour-Salamanca, A. Guinard, P. Soler, V. Servas, M. Vivier-Darrigol, M. Ledrans, M. Debruyne, O. Schaal, C. Jeannin, B. Helynck, I. Leparc-Goffart and B. Coignard, Large number of imported chikungunya cases in mainland france, 2014: a challenge for surveillance and response, Eurosurveillance, 19 (2014), 20856. doi: 10.2807/1560-7917.ES2014.19.28.20856.

[30]

P. Poletti, G. Messeri, M. Ajelli, R. Vallorani, C. Rizzo and S. Merler, Transmission potential of chikungunya virus and control measures: The case of italy, PLoS One, 6 (2011), e18860. doi: 10.1371/journal.pone.0018860.

[31]

G. RezzaL. NicolettiR. AngeliniR. RomiA. FinarelliM. PanningP. CordioliC. FortunaS. BorosF. MaguranoG. SilviP. AngeliniM. DottoriM. CiufoliniG. Majori and A. Cassone, Infection with hikungunya virus in italy: An outbreak in a temperate region, The Lancet, 370 (2007), 1840-1846.  doi: 10.1016/S0140-6736(07)61779-6.

[32]

D. Rogers and S. Randolph, Climate change and vector-borne diseases, Advances in parasitology, 62 (2006), 345-381.  doi: 10.1016/S0065-308X(05)62010-6.

[33]

D. A. Shroyer, AEDES ALBOPICTUS and arboviruses: A concise review of the literaturei, Journal of the American Mosquito Control Association, (1986).

[34]

F. SimonH. Savini and P. Parola, Chikungunya: A paradigm of emergence and globalization of vector-borne diseases, Medical Clinics of North America, 92 (2008), 1323-1343.  doi: 10.1016/j.mcna.2008.07.008.

[35]

T. TabataM. PetittH. Puerta-GuardoD. MichlmayrC. WangJ. Fang-HooverE. Harris and L. Pereira, Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission, Cell Host & Microbe, 20 (2016), 155-166.  doi: 10.1016/j.chom.2016.07.002.

[36]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

[37]

J. TumwiineJ. Mugisha and L. Luboobi, A host-vector model for malaria with infective immigrants, Journal of Mathematical Analysis and Applications, 361 (2010), 139-149.  doi: 10.1016/j.jmaa.2009.09.005.

[38]

A. Vega-Rua, K. Zouache, V. Caro, L. Diancourt, P. Delaunay, M. Grandadam and A.-B. Failloux, High efficiency of temperate aedes albopictus to transmit chikungunya and dengue viruses in the southeast of france, PLoS One, 8 (2013), e59716. doi: 10.1371/journal.pone.0059716.

[39]

M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability., IEEE Trans. Autom. Control, 25 (1980), 773-779.  doi: 10.1109/TAC.1980.1102422.

[40]

N. WauquierBe cquartD. NkogheC. PadillaA. Ndjoyi-Mbiguino and E. M. Leroy, The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and t cd8 cell activation, Journal of Infectious Diseases, 204 (2011), 115-123.  doi: 10.1093/infdis/jiq006.

[41]

A. Wilder-Smith, M. Quam, O. Sessions, J. Rocklov, J. Liu-Helmersson, L. Franco and K. Khan, The 2012 dengue outbreak in madeira: Exploring the origins, Euro Surveill, 19 (2014), 20718. doi: 10.2807/1560-7917.ES2014.19.8.20718.

[42]

World Health Organization et al., The World Health Report: 2004: Changing History, 2004.

[43]

—, A Global Brief on Vector-Borne Diseases, 2014.

show all references

References:
[1]

N. BameS. BowongJ. MbangG. Sallet and J. Tewa, Global stability for seis models with n latent classes, Math. Biosci. Eng., 5 (2008), 20-33.  doi: 10.3934/mbe.2008.5.20.

[2]

E. D. Barnett and P. F. Walker, Role of immigrants and migrants in emerging infectious diseases, Medical Clinics of North America, 92 (2008), 1447-1458.  doi: 10.1016/j.mcna.2008.07.001.

[3]

M. Q. BenedictR. S. LevineW. A. Hawley and L. P. Lounibos, Spread of the tiger: Global risk of invasion by the mosquito aedes albopictus, Vector-borne and Zoonotic Diseases, 7 (2007), 76-85. 

[4]

D. BicharaA. Iggidr and L. Smith, Multi-stage vector-borne zoonoses models: A global analysis, Bulletin of Mathematical Biology, 80 (2018), 1810-1848.  doi: 10.1007/s11538-018-0435-1.

[5]

B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0619-4.

[6]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically Autonomous Epidemic Models, in Mathematical Population Dynamics: Analysis of Heterogeneity, Volume One: Theory of Epidemics, O. Arino, A. D.E., and M. Kimmel, eds., Wuerz, 1995.

[8]

Centers for Disease Control and Prevention, Illnesses from mosquito, tick, and flea bites increasing in the us, Centers for Disease Control and Prevention, https://www.cdc.gov/media/releases/2018/p0501-vs-vector-borne.html, (2018).

[9]

G. ChowellP. Diaz-DuenasJ. MillerA. Alcazar-VelazcoJ. HymanP. Fenimore and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Mathematical biosciences, 208 (2007), 571-589.  doi: 10.1016/j.mbs.2006.11.011.

[10]

G. Cruz-PachecoL. Esteva and C. Vargas, Control measures for chagas disease, Mathematical biosciences, 237 (2012), 49-60.  doi: 10.1016/j.mbs.2012.03.005.

[11]

L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151.  doi: 10.1016/S0025-5564(98)10003-2.

[12]

E. A. GouldP. GallianX. De Lamballerie and R. N. Charrel, First cases of autochthonous dengue fever and chikungunya fever in france: From bad dream to reality!, Clinical Microbiology and Infection, 16 (2010), 1702-1704.  doi: 10.1111/j.1469-0691.2010.03386.x.

[13]

M. Grandadam, V. Caro, S. Plumet, J.-M. Thiberge, Y. Souares, A.-B. Failloux, H. J. Tolou, M. Budelot, D. Cosserat, I. Leparc-Goffart and P. Desprès, Chikungunya virus, southeastern france, Emerging Infectious Diseases, 17 (2011), p. 910.

[14]

H. Guo and M. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525.  doi: 10.3934/mbe.2006.3.513.

[15]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.  doi: 10.3934/dcdsb.2012.17.2413.

[16]

H. GuoM. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM Journal on applied mathematics, 72 (2012), 261-279.  doi: 10.1137/110827028.

[17]

J. M. HymanJ. Li and E. Stanley, The differential infectivity and staged progression models for the transmission of HIV., Math. Biosci., 155 (1999), 77-109.  doi: 10.1016/S0025-5564(98)10057-3.

[18]

M. Isaäcson, Airport malaria: A review, Bulletin of the World Health Organization, 67 (1989), p. 737.

[19]

T. L. Johnson, E. L. Landguth and E. F. Stone, Modeling relapsing disease dynamics in a host-vector community, PLoS Negl Trop Dis, 10 (2016), p. e0004428. doi: 10.1371/journal.pntd.0004428.

[20]

K. E. JonesN. G. PatelM. A. LevyA. StoreygardD. BalkJ. L. Gittleman and P. Daszak, Global trends in emerging infectious diseases, Nature, 451 (2008), 990-993.  doi: 10.1038/nature06536.

[21]

A. M. Kilpatrick and S. E. Randolph, Drivers, dynamics, and control of emerging vector-borne zoonotic diseases, The Lancet, 380 (2012), 1946-1955.  doi: 10.1016/S0140-6736(12)61151-9.

[22]

M. Li and J. S. Muldowney, On r.a. smith's automonmous convergence theorem, Rocky Mountain J. Math., 25 (1995), 365-379.  doi: 10.1216/rmjm/1181072289.

[23]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.  doi: 10.1016/0025-5564(95)92756-5.

[24]

C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1-16.  doi: 10.1016/S0025-5564(02)00149-9.

[25]

C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models, J. Dyn. Differ. Equations, 16 (2004), 139-166.  doi: 10.1023/B:JODY.0000041283.66784.3e.

[26]

C. J. Mitchell, Geographic spread of aedes albopictus and potential for involvement in arbovirus cycles in the mediterranean basin, Journal of Vector Ecology, 20 (1985), 44-58. 

[27]

J. Moon, Counting Labeled Trees, Canadian Math, Monographs, 1970.

[28]

C. PalmerE. LandguthE. Stone and T. Johnson, The dynamics of vector-borne relapsing diseases, Math. Biosci., 297 (2018), 32-42.  doi: 10.1016/j.mbs.2018.01.001.

[29]

M. Paty, C. Six, F. Charlet, G. Heuzé, A. Cochet, A. Wiegandt, J. Chappert, D. Dejour-Salamanca, A. Guinard, P. Soler, V. Servas, M. Vivier-Darrigol, M. Ledrans, M. Debruyne, O. Schaal, C. Jeannin, B. Helynck, I. Leparc-Goffart and B. Coignard, Large number of imported chikungunya cases in mainland france, 2014: a challenge for surveillance and response, Eurosurveillance, 19 (2014), 20856. doi: 10.2807/1560-7917.ES2014.19.28.20856.

[30]

P. Poletti, G. Messeri, M. Ajelli, R. Vallorani, C. Rizzo and S. Merler, Transmission potential of chikungunya virus and control measures: The case of italy, PLoS One, 6 (2011), e18860. doi: 10.1371/journal.pone.0018860.

[31]

G. RezzaL. NicolettiR. AngeliniR. RomiA. FinarelliM. PanningP. CordioliC. FortunaS. BorosF. MaguranoG. SilviP. AngeliniM. DottoriM. CiufoliniG. Majori and A. Cassone, Infection with hikungunya virus in italy: An outbreak in a temperate region, The Lancet, 370 (2007), 1840-1846.  doi: 10.1016/S0140-6736(07)61779-6.

[32]

D. Rogers and S. Randolph, Climate change and vector-borne diseases, Advances in parasitology, 62 (2006), 345-381.  doi: 10.1016/S0065-308X(05)62010-6.

[33]

D. A. Shroyer, AEDES ALBOPICTUS and arboviruses: A concise review of the literaturei, Journal of the American Mosquito Control Association, (1986).

[34]

F. SimonH. Savini and P. Parola, Chikungunya: A paradigm of emergence and globalization of vector-borne diseases, Medical Clinics of North America, 92 (2008), 1323-1343.  doi: 10.1016/j.mcna.2008.07.008.

[35]

T. TabataM. PetittH. Puerta-GuardoD. MichlmayrC. WangJ. Fang-HooverE. Harris and L. Pereira, Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission, Cell Host & Microbe, 20 (2016), 155-166.  doi: 10.1016/j.chom.2016.07.002.

[36]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

[37]

J. TumwiineJ. Mugisha and L. Luboobi, A host-vector model for malaria with infective immigrants, Journal of Mathematical Analysis and Applications, 361 (2010), 139-149.  doi: 10.1016/j.jmaa.2009.09.005.

[38]

A. Vega-Rua, K. Zouache, V. Caro, L. Diancourt, P. Delaunay, M. Grandadam and A.-B. Failloux, High efficiency of temperate aedes albopictus to transmit chikungunya and dengue viruses in the southeast of france, PLoS One, 8 (2013), e59716. doi: 10.1371/journal.pone.0059716.

[39]

M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability., IEEE Trans. Autom. Control, 25 (1980), 773-779.  doi: 10.1109/TAC.1980.1102422.

[40]

N. WauquierBe cquartD. NkogheC. PadillaA. Ndjoyi-Mbiguino and E. M. Leroy, The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and t cd8 cell activation, Journal of Infectious Diseases, 204 (2011), 115-123.  doi: 10.1093/infdis/jiq006.

[41]

A. Wilder-Smith, M. Quam, O. Sessions, J. Rocklov, J. Liu-Helmersson, L. Franco and K. Khan, The 2012 dengue outbreak in madeira: Exploring the origins, Euro Surveill, 19 (2014), 20718. doi: 10.2807/1560-7917.ES2014.19.8.20718.

[42]

World Health Organization et al., The World Health Report: 2004: Changing History, 2004.

[43]

—, A Global Brief on Vector-Borne Diseases, 2014.

Figure 1.  Flow diagram of Model 1. Note that, to unclutter the figure, we did not display the arrows that represent the recruitments for $ I_2 $, $ I_3 $ and $ I_4 $. Similarly, the arrows representing the death, $ \mu_i $, and recovery rates, $ \eta_i, $ in all host classes are not displayed
Figure 2.  Effects of host-vector transmission on the dynamics of Model (2) with $ n = 4 $. The proportions of infectious influx are $ p_1 = 0.2 $, $ p_3 = 0.1 $, $ p_4 = 0 $ and $ p_{5} = 0.3 $. The transfer matrix $ M $ is such as $ \gamma_{13} = \gamma_{24} = 0.1 $, $ \gamma_{14} = 0.2 $, $ \delta_{21} = 0.01 $, $ \delta_{31} = 0.02 $, $ \delta_{41} = 0.001 $, $ \delta_{32} = 0.03 $, $ \delta_{42} = 0.01 $ and $ \delta_{43} = 0.03 $
Figure 3.  Dynamics of infected hosts and vectors when the hypotheses of Theorem 3.1, Item 3 are satisfied. The proportions of infectious influx are $ p_0 = 0 $, $ {\bf p} = (0, 0, p_3, p_4)^T = (0, 0, 0.2, 0.0001)^T $ and $ p_{5} = 0.3 $. The transfer matrix $ M $ is such as $ \gamma_{13} = 0.1 $, $ \gamma_{14} = \gamma_{24} = 0 $, $ \delta_{21} = 0.01 $, $ \delta_{31} = \delta_{32} = \delta_{42} = 0 $, $ \delta_{41} = 0.035 $, and $ \delta_{43} = 0.03 $
Figure 4.  Dynamics of infected hosts and vectors when the hypotheses of Theorem 3.1, Item 4 are satisfied. The proportions of infectious influx are $ p_0 = 0 $, $ {\bf p} = (0, 0, p_3, p_4)^T = (0, 0, 0.2, 0.0001)^T $ and $ p_{5} = 0.3 $. The transfer matrix $ M $ is such as $ \gamma_{13} = 0.1 $, $ \gamma_{14} = \gamma_{24} = 0 $, $ \delta_{21} = 0.01 $, $ \delta_{31} = \delta_{32} = \delta_{41} = \delta_{42} = 0 $, and $ \delta_{43} = 0.03 $. With these parameters, $ {\mathcal N}_0^2 = 0.3237\leq1 $. As expected, the vector population will be disease-free (Figure 4(b) and Figure 4(d)) and the infectious hosts are generated only through influx of infectious immigrants at stage 3 and 4 (Figure 4(a) and Figure 4(c))
Figure 5.  Dynamics of infected hosts and vectors when the hypotheses of Theorem 3.1, Item 4 are satisfied. The proportions of infectious influx are $ p_0 = 0 $, $ {\bf p} = (0, 0, p_3, p_4)^T = (0, 0, 0.2, 0.0001)^T $ and $ p_{5} = 0.3 $. The transfer matrix $ M $ is such as $ \gamma_{13} = 0.1 $, $ \gamma_{14} = \gamma_{24} = 0 $, $ \delta_{21} = 0.01 $, $ \delta_{31} = \delta_{32} = \delta_{41} = \delta_{42} = 0 $, and $ \delta_{43} = 0.03 $. Using the values $ a = 0.9 $ and $ \beta_{vh} = 0.9 $, $ {\mathcal N}_0^2 = 1.6051>1 $, and thus the trajectories of the system converge towards an interior equilibrium
Table 1.  Description of the parameters used in System (1)
Parameters Description
$ \pi_h $ Recruitment of the host
$ \pi_v $ Recruitment of vectors
$ p_0 $ Proportion of latent immigrants
$ p_i $ Proportion of infectious immigrants at stage $ i $
$ a $ Biting rate
$ \mu_h $ Host's natural death rate
$ \beta_{v, h} $ Host's infectiousness by mosquitoes per biting
$ \beta_{i} $ Vector's infectiousness by host at stage $ i $ per biting
$ \nu_h $ Host's rate at which the exposed individuals become infectious
$ \eta_i $ Per capita recovery rate of an infected host at stage $ i $
$ \gamma_{ij} $ Host's per capita progression rate from stage $ i $ to $ j $
$ \delta_{ij} $ Host's per capita regression rate from stage $ i $ to $ j $
$ \mu_v $ Vectors' natural mortality rate
$ \delta_v $ Vectors' control-induced mortality rate
$ \nu_v $ Rate at which the exposed vectors become infectious
Parameters Description
$ \pi_h $ Recruitment of the host
$ \pi_v $ Recruitment of vectors
$ p_0 $ Proportion of latent immigrants
$ p_i $ Proportion of infectious immigrants at stage $ i $
$ a $ Biting rate
$ \mu_h $ Host's natural death rate
$ \beta_{v, h} $ Host's infectiousness by mosquitoes per biting
$ \beta_{i} $ Vector's infectiousness by host at stage $ i $ per biting
$ \nu_h $ Host's rate at which the exposed individuals become infectious
$ \eta_i $ Per capita recovery rate of an infected host at stage $ i $
$ \gamma_{ij} $ Host's per capita progression rate from stage $ i $ to $ j $
$ \delta_{ij} $ Host's per capita regression rate from stage $ i $ to $ j $
$ \mu_v $ Vectors' natural mortality rate
$ \delta_v $ Vectors' control-induced mortality rate
$ \nu_v $ Rate at which the exposed vectors become infectious
[1]

Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301

[2]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[3]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[4]

Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513

[5]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[6]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[7]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[8]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[9]

Andrey V. Melnik, Andrei Korobeinikov. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1019-1034. doi: 10.3934/mbe.2011.8.1019

[10]

Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338

[11]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[12]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[13]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[14]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[15]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[16]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[17]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[18]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[19]

Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi. Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models. Mathematical Biosciences & Engineering, 2015, 12 (1) : 117-133. doi: 10.3934/mbe.2015.12.117

[20]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (179)
  • HTML views (267)
  • Cited by (1)

Other articles
by authors

[Back to Top]