December  2019, 24(12): 6325-6347. doi: 10.3934/dcdsb.2019141

Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity

1. 

School of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

2. 

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China

* Corresponding author: Linghua Kong

Received  September 2018 Revised  January 2019 Published  December 2019 Early access  July 2019

Fund Project: This work is supported by the NNSFC(Nos. 11271171, 11301234, and 11571181), the Natural Science Foundation of Jiangxi Province (Nos. 20161ACB20006, 20142BCB23009, 20181BAB201008), the State Key Laboratory of Scientific and Engineering Computing, CAS.

The objective of this paper is to propose some high-order compact schemes for two-dimensional Ginzburg-Landau equation. The space is approximated by high-order compact methods to improve the computational efficiency. Based on Crank-Nicolson method in time, several temporal approximations are used starting from different viewpoints. The numerical characters of the new schemes, such as the existence and uniqueness, stability, convergence are investigated. Some numerical illustrations are reported to confirm the advantages of the new schemes by comparing with other existing works. In the numerical experiments, the role of some parameters in the model is considered and tested.

Citation: Linghua Kong, Liqun Kuang, Tingchun Wang. Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6325-6347. doi: 10.3934/dcdsb.2019141
References:
[1]

F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., 17 (1965), 24-49. 

[2]

C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Austral. Math. Soc. Ser. B., 36 (1995), 313-324.  doi: 10.1017/S0334270000010468.

[3]

Z. CaoB. Guo and B. Wang, Global existence theory for the two-dimensional derivative Ginzburg-Landau equation, Chin. Sci. Bull., 43 (1998), 393-395.  doi: 10.1007/BF02883716.

[4]

Z. Chen, Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity, Numer. Math., 76 (1997), 323-353.  doi: 10.1007/s002110050266.

[5]

Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal., 38 (2001), 1961-1985.  doi: 10.1137/S0036142998349102.

[6]

C. DoeringJ. D. GibbonD. Holm and B. Nicolaenko, Low dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1 (1998), 279-309.  doi: 10.1088/0951-7715/1/2/001.

[7]

Q. DuM. D. Gunzburger and J. S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev., 34 (1992), 54-81.  doi: 10.1137/1034003.

[8]

Q. Du, Finite element methods for the time-dependent Ginzberg-Landau model of superconductivity, Comput. Math. Appl., 27 (1994), 119-133.  doi: 10.1016/0898-1221(94)90091-4.

[9]

Q. Du, Discrete gauge invariant approximations of a time dependent Ginzberg-Landau model of superconductivity, Math. Comput., 67 (1998), 965-986.  doi: 10.1090/S0025-5718-98-00954-5.

[10]

L. C. Evans, Partial Differential Equations, Providence, American Mathematical Society, Rhode Island, 1998. doi: 10.1090/gsm/019.

[11]

H. GaoB. Li and W. Sun, Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 52 (2014), 1183-1202.  doi: 10.1137/130918678.

[12]

H. Gao and J. Duan, Asymptotic for the generalized two dimensional Ginzburg-Landau equation, J. Math. Anal. Appl., 247 (2000), 198-216.  doi: 10.1006/jmaa.2000.6848.

[13]

J. M. Gnidaglia and B. Heron, Dimension of the attractor associated to the Ginzburg-Landau equation, Physica D, 28 (1987), 282-304.  doi: 10.1016/0167-2789(87)90020-0.

[14]

L. KongJ HongL. Ji and P. Zhu, Compact and efficient conservative schemes for coupled nonlinear Schrödinger equations, Numer. Methods Partial Differential Eq., 31 (2015), 1814-1843.  doi: 10.1002/num.21969.

[15]

A. Y. Kolesov and N. K. Rosov, Characteristic features of the dynamics of the Ginzburg-Landau equation in a plane domain, Theor. Math. Phys., 125 (2000), 1476-1488.  doi: 10.1007/BF02551008.

[16]

L. KuangL. KongL. Wang and X. Zheng, The splitting high-order compact scheme for two-dimensional Ginzburg-Landau equation, J Jianxi Normal Univer., 40 (2017), 35-38. 

[17]

S. K. Lele, Compact finite difference schemes with spectral-like solution, J. Comput. Phys., 103 (1992), 16-42.  doi: 10.1016/0021-9991(92)90324-R.

[18]

C. D. Levemore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lect. Appl. Math., 31 (1996), 141-190. 

[19]

J. Li, High order compact ADI methods for the parabolic equations, Comput. Math. Appl., 52 (2006), 1343-1356.  doi: 10.1016/j.camwa.2006.11.010.

[20]

Y. Li and B. Guo, Global existence of solutions to the derivative Ginzburg-Landau equation, J. Math. Anal. Appl., 249 (2000), 412-432.  doi: 10.1006/jmaa.2000.6880.

[21]

B. Li, Convergence of a decoupled mixed FEM for the dynamic Ginzberg-Landau equations in nonsmooth domains with incompatible initial, Calclo, 54 (2017), 1441-1480.  doi: 10.1007/s10092-017-0237-0.

[22]

B. Li and Z. Zhang, Mathematical and numerical analysis of time-dependent Ginzburg-Landau equations in nonconvex polygons based on hodge decomposition, Math. Comput., 86 (2017), 1579-1608.  doi: 10.1090/mcom/3177.

[23]

S. Lü and Q. Lu, Exponential attractor for the 3D Ginzburg-Landau type equation, Nonlin. Anal., 67 (2007), 3116-3135.  doi: 10.1016/j.na.2006.10.005.

[24]

S. LüQ. Lu and E. H. Twizell, Fourier spectral approximation to long-time behavior of the derivative three-dimensional Ginzburg-Landau equation, J. Comput. Appl. Math., 198 (2007), 167-186.  doi: 10.1016/j.cam.2005.11.028.

[25]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation, Physica D., 41 (1990), 232-252.  doi: 10.1016/0167-2789(90)90125-9.

[26]

Y. V. S. S. Sanyasiraju and N. Mishra, Spectral resolution exponential compact higher order scheme for convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 197 (2008), 4737-4744.  doi: 10.1016/j.cma.2008.06.013.

[27]

A Shokri and F Afshari, High-order compact ADI method using predictor-corrector scheme for 2D complex Ginzburg-Landau equation, Comput. Phys. Commun., 197 (2015), 43-50.  doi: 10.1016/j.cpc.2015.08.005.

[28]

B. Wang, Existence of time periodic solutions for the Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 232 (1999), 394-412.  doi: 10.1006/jmaa.1999.6283.

[29]

H. Wang, An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations, Comput. Phys. Comms., 181 (2010), 325-340.  doi: 10.1016/j.cpc.2009.10.007.

[30]

L. WangY. Zhou and L. Fu, The compact and modified ADI scheme for Schrödinger equations, J. Jiangxi Normal Univer., 40 (2016), 515-519. 

[31]

T. Wang and B. Guo, Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation, Numer. Meth. Part. Diff. Eq., 27 (2011), 1340-1363.  doi: 10.1002/num.20588.

[32]

P. Wang and C. Huang, An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation, BIT Numer. Math., 58 (2018), 783-805.  doi: 10.1007/s10543-018-0698-9.

[33]

X. WangW. Li and L. Mao, On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation $AX+XB = C$., Comput. Math. with Appl., 66 (2013), 2352-2361.  doi: 10.1016/j.camwa.2013.09.011.

[34]

Q. Xu and Q. Chang, Difference methods for computing the Ginzburg-Landau equation in two dimensions, Numer. Meth. Part. Diff. Eq., 27 (2011), 507-528.  doi: 10.1002/num.20535.

[35]

M. Zhan, Existence of periodic solutions for Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 249 (2000), 614-625.  doi: 10.1006/jmaa.2000.6920.

[36]

J. Zhang and G. Yan, Three-dimensional Lattice Boltzmann model for the complex Ginzburg-Landau equation, J. Sci. Comput., 60 (2014), 660-683.  doi: 10.1007/s10915-013-9811-z.

[37]

Y. ZhangW. Bao and Q. Du, Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation, Eur. J. Appl. Math., 18 (2007), 607-630.  doi: 10.1017/S0956792507007140.

[38]

R. ZhouX. Wang and X. Tang, On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation $AX+XB = C$, East Asian J. Appl. Math., 7 (2017), 55-69.  doi: 10.4208/eajam.190716.051116a.

[39]

Y. Zhou, Application of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, 1991.

show all references

References:
[1]

F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., 17 (1965), 24-49. 

[2]

C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Austral. Math. Soc. Ser. B., 36 (1995), 313-324.  doi: 10.1017/S0334270000010468.

[3]

Z. CaoB. Guo and B. Wang, Global existence theory for the two-dimensional derivative Ginzburg-Landau equation, Chin. Sci. Bull., 43 (1998), 393-395.  doi: 10.1007/BF02883716.

[4]

Z. Chen, Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity, Numer. Math., 76 (1997), 323-353.  doi: 10.1007/s002110050266.

[5]

Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal., 38 (2001), 1961-1985.  doi: 10.1137/S0036142998349102.

[6]

C. DoeringJ. D. GibbonD. Holm and B. Nicolaenko, Low dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1 (1998), 279-309.  doi: 10.1088/0951-7715/1/2/001.

[7]

Q. DuM. D. Gunzburger and J. S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Rev., 34 (1992), 54-81.  doi: 10.1137/1034003.

[8]

Q. Du, Finite element methods for the time-dependent Ginzberg-Landau model of superconductivity, Comput. Math. Appl., 27 (1994), 119-133.  doi: 10.1016/0898-1221(94)90091-4.

[9]

Q. Du, Discrete gauge invariant approximations of a time dependent Ginzberg-Landau model of superconductivity, Math. Comput., 67 (1998), 965-986.  doi: 10.1090/S0025-5718-98-00954-5.

[10]

L. C. Evans, Partial Differential Equations, Providence, American Mathematical Society, Rhode Island, 1998. doi: 10.1090/gsm/019.

[11]

H. GaoB. Li and W. Sun, Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 52 (2014), 1183-1202.  doi: 10.1137/130918678.

[12]

H. Gao and J. Duan, Asymptotic for the generalized two dimensional Ginzburg-Landau equation, J. Math. Anal. Appl., 247 (2000), 198-216.  doi: 10.1006/jmaa.2000.6848.

[13]

J. M. Gnidaglia and B. Heron, Dimension of the attractor associated to the Ginzburg-Landau equation, Physica D, 28 (1987), 282-304.  doi: 10.1016/0167-2789(87)90020-0.

[14]

L. KongJ HongL. Ji and P. Zhu, Compact and efficient conservative schemes for coupled nonlinear Schrödinger equations, Numer. Methods Partial Differential Eq., 31 (2015), 1814-1843.  doi: 10.1002/num.21969.

[15]

A. Y. Kolesov and N. K. Rosov, Characteristic features of the dynamics of the Ginzburg-Landau equation in a plane domain, Theor. Math. Phys., 125 (2000), 1476-1488.  doi: 10.1007/BF02551008.

[16]

L. KuangL. KongL. Wang and X. Zheng, The splitting high-order compact scheme for two-dimensional Ginzburg-Landau equation, J Jianxi Normal Univer., 40 (2017), 35-38. 

[17]

S. K. Lele, Compact finite difference schemes with spectral-like solution, J. Comput. Phys., 103 (1992), 16-42.  doi: 10.1016/0021-9991(92)90324-R.

[18]

C. D. Levemore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Lect. Appl. Math., 31 (1996), 141-190. 

[19]

J. Li, High order compact ADI methods for the parabolic equations, Comput. Math. Appl., 52 (2006), 1343-1356.  doi: 10.1016/j.camwa.2006.11.010.

[20]

Y. Li and B. Guo, Global existence of solutions to the derivative Ginzburg-Landau equation, J. Math. Anal. Appl., 249 (2000), 412-432.  doi: 10.1006/jmaa.2000.6880.

[21]

B. Li, Convergence of a decoupled mixed FEM for the dynamic Ginzberg-Landau equations in nonsmooth domains with incompatible initial, Calclo, 54 (2017), 1441-1480.  doi: 10.1007/s10092-017-0237-0.

[22]

B. Li and Z. Zhang, Mathematical and numerical analysis of time-dependent Ginzburg-Landau equations in nonconvex polygons based on hodge decomposition, Math. Comput., 86 (2017), 1579-1608.  doi: 10.1090/mcom/3177.

[23]

S. Lü and Q. Lu, Exponential attractor for the 3D Ginzburg-Landau type equation, Nonlin. Anal., 67 (2007), 3116-3135.  doi: 10.1016/j.na.2006.10.005.

[24]

S. LüQ. Lu and E. H. Twizell, Fourier spectral approximation to long-time behavior of the derivative three-dimensional Ginzburg-Landau equation, J. Comput. Appl. Math., 198 (2007), 167-186.  doi: 10.1016/j.cam.2005.11.028.

[25]

K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation, Physica D., 41 (1990), 232-252.  doi: 10.1016/0167-2789(90)90125-9.

[26]

Y. V. S. S. Sanyasiraju and N. Mishra, Spectral resolution exponential compact higher order scheme for convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 197 (2008), 4737-4744.  doi: 10.1016/j.cma.2008.06.013.

[27]

A Shokri and F Afshari, High-order compact ADI method using predictor-corrector scheme for 2D complex Ginzburg-Landau equation, Comput. Phys. Commun., 197 (2015), 43-50.  doi: 10.1016/j.cpc.2015.08.005.

[28]

B. Wang, Existence of time periodic solutions for the Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 232 (1999), 394-412.  doi: 10.1006/jmaa.1999.6283.

[29]

H. Wang, An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations, Comput. Phys. Comms., 181 (2010), 325-340.  doi: 10.1016/j.cpc.2009.10.007.

[30]

L. WangY. Zhou and L. Fu, The compact and modified ADI scheme for Schrödinger equations, J. Jiangxi Normal Univer., 40 (2016), 515-519. 

[31]

T. Wang and B. Guo, Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation, Numer. Meth. Part. Diff. Eq., 27 (2011), 1340-1363.  doi: 10.1002/num.20588.

[32]

P. Wang and C. Huang, An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation, BIT Numer. Math., 58 (2018), 783-805.  doi: 10.1007/s10543-018-0698-9.

[33]

X. WangW. Li and L. Mao, On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation $AX+XB = C$., Comput. Math. with Appl., 66 (2013), 2352-2361.  doi: 10.1016/j.camwa.2013.09.011.

[34]

Q. Xu and Q. Chang, Difference methods for computing the Ginzburg-Landau equation in two dimensions, Numer. Meth. Part. Diff. Eq., 27 (2011), 507-528.  doi: 10.1002/num.20535.

[35]

M. Zhan, Existence of periodic solutions for Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 249 (2000), 614-625.  doi: 10.1006/jmaa.2000.6920.

[36]

J. Zhang and G. Yan, Three-dimensional Lattice Boltzmann model for the complex Ginzburg-Landau equation, J. Sci. Comput., 60 (2014), 660-683.  doi: 10.1007/s10915-013-9811-z.

[37]

Y. ZhangW. Bao and Q. Du, Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation, Eur. J. Appl. Math., 18 (2007), 607-630.  doi: 10.1017/S0956792507007140.

[38]

R. ZhouX. Wang and X. Tang, On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation $AX+XB = C$, East Asian J. Appl. Math., 7 (2017), 55-69.  doi: 10.4208/eajam.190716.051116a.

[39]

Y. Zhou, Application of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, 1991.

Figure 1.  The evolution of mass against time by Scheme 1
Figure 2.  The error of numerical solution in real part against time by Scheme 1 in sense of $ L_2 $ (Left) and $ L_\infty $ (Right)
Figure 3.  Plots of the numerical solution at different times. Real part (Left), imaginary part (Right)
Figure 4.  The evolution of mass against time of Gaussian pulse by Scheme 1
Figure 5.  Plots of $ |U_{j,k}^n| $ at different times
Figure 6.  Plots of $ |U_{j,k}^n| $ with different $ \gamma $ at $ t = 2 $ (left) and $ t = 4 $ (right)
Figure 7.  Plots of $ |U_{j,k}^n| $ with different $ \beta $ at $ t = 2.5 $ (left) and $ t = 5 $ (right)
Table 1.  Spatial convergent test and comparison among all schemes with $ \tau = 0.001 $
Scheme $ h $ $ \|e_{re}^n\|_2 $ order $ \|e_{re}^n\|_\infty $ order CPU (s)
1 $ 1 $ $ 2.20\times 10^{-2} $ - $ 4.93\times 10^{-3} $ - $ 2.1 $
$ 0.5 $ $ 1.33\times 10^{-3} $ $ 4.05 $ $ 3.04\times 10^{-4} $ $ 4.02 $ $ 7.9 $
$ 0.25 $ $ 8.76\times 10^{-5} $ $ 3.92 $ $ 2.09\times 10^{-5} $ $ 3.86 $ $ 39 $
2 $ 1 $ $ 2.20\times 10^{-2} $ - $ 4.93\times 10^{-3} $ - $ 1.7 $
$ 0.5 $ $ 1.33\times 10^{-3} $ $ 4.05 $ $ 3.04\times 10^{-4} $ $ 4.02 $ $ 6.8 $
$ 0.25 $ $ 7.89\times 10^{-5} $ $ 4.08 $ $ 1.86\times 10^{-5} $ $ 4.03 $ $ 34 $
3 $ 1 $ $ 3.82\times 10^{-1} $ - $ 8.20\times 10^{-2} $ - $ 1.1 $
$ 0.5 $ $ 9.61\times 10^{-2} $ $ 1.99 $ $ 2.23\times 10^{-2} $ $ 1.88 $ $ 4.4 $
$ 0.25 $ $ 2.41\times 10^{-2} $ $ 1.98 $ $ 5.66\times 10^{-3} $ $ 2.00 $ $ 25 $
4 $ 1 $ $ 3.82\times 10^{-1} $ - $ 8.20\times 10^{-2} $ - $ 1.1 $
$ 0.5 $ $ 9.60\times 10^{-2} $ $ 1.99 $ $ 2.22\times 10^{-2} $ $ 1.88 $ $ 4.5 $
$ 0.25 $ $ 2.40\times 10^{-2} $ $ 2.00 $ $ 5.66\times 10^{-3} $ $ 2.00 $ $ 25 $
Scheme $ h $ $ \|e_{re}^n\|_2 $ order $ \|e_{re}^n\|_\infty $ order CPU (s)
1 $ 1 $ $ 2.20\times 10^{-2} $ - $ 4.93\times 10^{-3} $ - $ 2.1 $
$ 0.5 $ $ 1.33\times 10^{-3} $ $ 4.05 $ $ 3.04\times 10^{-4} $ $ 4.02 $ $ 7.9 $
$ 0.25 $ $ 8.76\times 10^{-5} $ $ 3.92 $ $ 2.09\times 10^{-5} $ $ 3.86 $ $ 39 $
2 $ 1 $ $ 2.20\times 10^{-2} $ - $ 4.93\times 10^{-3} $ - $ 1.7 $
$ 0.5 $ $ 1.33\times 10^{-3} $ $ 4.05 $ $ 3.04\times 10^{-4} $ $ 4.02 $ $ 6.8 $
$ 0.25 $ $ 7.89\times 10^{-5} $ $ 4.08 $ $ 1.86\times 10^{-5} $ $ 4.03 $ $ 34 $
3 $ 1 $ $ 3.82\times 10^{-1} $ - $ 8.20\times 10^{-2} $ - $ 1.1 $
$ 0.5 $ $ 9.61\times 10^{-2} $ $ 1.99 $ $ 2.23\times 10^{-2} $ $ 1.88 $ $ 4.4 $
$ 0.25 $ $ 2.41\times 10^{-2} $ $ 1.98 $ $ 5.66\times 10^{-3} $ $ 2.00 $ $ 25 $
4 $ 1 $ $ 3.82\times 10^{-1} $ - $ 8.20\times 10^{-2} $ - $ 1.1 $
$ 0.5 $ $ 9.60\times 10^{-2} $ $ 1.99 $ $ 2.22\times 10^{-2} $ $ 1.88 $ $ 4.5 $
$ 0.25 $ $ 2.40\times 10^{-2} $ $ 2.00 $ $ 5.66\times 10^{-3} $ $ 2.00 $ $ 25 $
Table 2.  Temporal convergent test and comparison among all schemes with $ h_x = h_y = 6/80 $
Scheme $ \tau $ $ \|e_{re}^n\|_2 $ order $ \|e_{re}^n\|_\infty $ order CPU(s)
1 $ 0.1 $ $ 4.18\times 10^{-1} $ - $ 9.85\times 10^{-2} $ - $ 17.9 $
$ 0.05 $ $ 1.07\times 10^{-1} $ $ 1.97 $ $ 2.51\times 10^{-2} $ $ 1.97 $ $ 24.2 $
$ 0.025 $ $ 2.68\times 10^{-2} $ $ 1.99 $ $ 6.32\times 10^{-3} $ $ 1.99 $ $ 39.9 $
$ 0.0125 $ $ 6.71\times 10^{-3} $ $ 2.00 $ $ 1.58\times 10^{-3} $ $ 2.00 $ $ 72.1 $
2 $ 0.1 $ $ 2.29\times 10^{-1} $ - $ 5.39\times 10^{-1} $ - $ 14.2 $
$ 0.05 $ $ 6.15\times 10^{-2} $ $ 1.89 $ $ 1.45\times 10^{-2} $ $ 1.89 $ $ 23.6 $
$ 0.025 $ $ 1.59\times 10^{-2} $ $ 1.95 $ $ 3.74\times 10^{-3} $ $ 1.95 $ $ 39.0 $
$ 0.0125 $ $ 4.02\times 10^{-3} $ $ 1.98 $ $ 9.47\times 10^{-4} $ $ 1.98 $ $ 61.9 $
3 $ 0.1 $ $ 4.18\times 10^{-1} $ - $ 9.85\times 10^{-2} $ - $ 16.1 $
$ 0.05 $ $ 1.07\times 10^{-2} $ $ 1.97 $ $ 2.51\times 10^{-2} $ $ 1.97 $ $ 21.4 $
$ 0.025 $ $ 2.67\times 10^{-2} $ $ 2.00 $ $ 6.28\times 10^{-3} $ $ 2.00 $ $ 36.0 $
$ 0.0125 $ $ 6.81\times 10^{-3} $ $ 1.97 $ $ 1.61\times 10^{-3} $ $ 1.97 $ $ 58.2 $
4 $ 0.1 $ $ 2.28\times 10^{-1} $ - $ 5.38\times 10^{-2} $ - $ 11.8 $
$ 0.05 $ $ 6.11\times 10^{-2} $ $ 1.90 $ $ 1.44\times 10^{-2} $ $ 1.90 $ $ 19.0 $
$ 0.025 $ $ 1.54\times 10^{-2} $ $ 1.98 $ $ 3.64\times 10^{-3} $ $ 1.98 $ $ 35.3 $
$ 0.0125 $ $ 3.99\times 10^{-3} $ $ 1.95 $ $ 9.40\times 10^{-4} $ $ 1.95 $ $ 50.3 $
Scheme $ \tau $ $ \|e_{re}^n\|_2 $ order $ \|e_{re}^n\|_\infty $ order CPU(s)
1 $ 0.1 $ $ 4.18\times 10^{-1} $ - $ 9.85\times 10^{-2} $ - $ 17.9 $
$ 0.05 $ $ 1.07\times 10^{-1} $ $ 1.97 $ $ 2.51\times 10^{-2} $ $ 1.97 $ $ 24.2 $
$ 0.025 $ $ 2.68\times 10^{-2} $ $ 1.99 $ $ 6.32\times 10^{-3} $ $ 1.99 $ $ 39.9 $
$ 0.0125 $ $ 6.71\times 10^{-3} $ $ 2.00 $ $ 1.58\times 10^{-3} $ $ 2.00 $ $ 72.1 $
2 $ 0.1 $ $ 2.29\times 10^{-1} $ - $ 5.39\times 10^{-1} $ - $ 14.2 $
$ 0.05 $ $ 6.15\times 10^{-2} $ $ 1.89 $ $ 1.45\times 10^{-2} $ $ 1.89 $ $ 23.6 $
$ 0.025 $ $ 1.59\times 10^{-2} $ $ 1.95 $ $ 3.74\times 10^{-3} $ $ 1.95 $ $ 39.0 $
$ 0.0125 $ $ 4.02\times 10^{-3} $ $ 1.98 $ $ 9.47\times 10^{-4} $ $ 1.98 $ $ 61.9 $
3 $ 0.1 $ $ 4.18\times 10^{-1} $ - $ 9.85\times 10^{-2} $ - $ 16.1 $
$ 0.05 $ $ 1.07\times 10^{-2} $ $ 1.97 $ $ 2.51\times 10^{-2} $ $ 1.97 $ $ 21.4 $
$ 0.025 $ $ 2.67\times 10^{-2} $ $ 2.00 $ $ 6.28\times 10^{-3} $ $ 2.00 $ $ 36.0 $
$ 0.0125 $ $ 6.81\times 10^{-3} $ $ 1.97 $ $ 1.61\times 10^{-3} $ $ 1.97 $ $ 58.2 $
4 $ 0.1 $ $ 2.28\times 10^{-1} $ - $ 5.38\times 10^{-2} $ - $ 11.8 $
$ 0.05 $ $ 6.11\times 10^{-2} $ $ 1.90 $ $ 1.44\times 10^{-2} $ $ 1.90 $ $ 19.0 $
$ 0.025 $ $ 1.54\times 10^{-2} $ $ 1.98 $ $ 3.64\times 10^{-3} $ $ 1.98 $ $ 35.3 $
$ 0.0125 $ $ 3.99\times 10^{-3} $ $ 1.95 $ $ 9.40\times 10^{-4} $ $ 1.95 $ $ 50.3 $
[1]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355

[2]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic and Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[3]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[4]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[5]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[6]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[7]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[8]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[9]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[10]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[11]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[12]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056

[13]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[14]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[15]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[16]

Kai Jiang, Wei Si. High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28 (2) : 1077-1093. doi: 10.3934/era.2020059

[17]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[18]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[19]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[20]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (456)
  • HTML views (322)
  • Cited by (2)

Other articles
by authors

[Back to Top]