[1]
|
T. Benjamin, J. Bona and J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R Soc. Lond. A, 227 (1972), 47-78.
doi: 10.1098/rsta.1972.0032.
|
[2]
|
D. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.
doi: 10.1017/S0022112066001678.
|
[3]
|
P. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Soc., 85 (1979), 143-160.
doi: 10.1017/S0305004100055572.
|
[4]
|
I. Dag, B. Saka and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation, Appl. Math. Comput., 159 (2004), 373-389.
doi: 10.1016/j.amc.2003.10.020.
|
[5]
|
M. Dehghan and R. Salehi, The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas, Comput. Phys. Commun., 182 (2011), 2540-2549.
doi: 10.1016/j.cpc.2011.07.018.
|
[6]
|
A. Dogan, Numerical solution of RLW equation using linear finite elements within Galerkin's method, Appl. Math. Model., 26 (2002), 771-783.
doi: 10.1016/S0307-904X(01)00084-1.
|
[7]
|
Y. Gao and L. Mei, Mixed Galerkin finite element methods for modified regularized long-wave equation, Appl. Math. Comput., 258 (2015), 267-281.
doi: 10.1016/j.amc.2015.02.012.
|
[8]
|
H. Gu and N. Chen, Least-squares mixed finite element methods for the RLW equations, Numer. Method Partial Differential Equation, 24 (2008), 749-758.
doi: 10.1002/num.20285.
|
[9]
|
B. Guo and W. Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.
doi: 10.1016/0021-9991(88)90072-1.
|
[10]
|
C. Lu, W. Huang and J. Qiu, An adaptive moving mesh finite element solution of the Regularized Long Wave equation, J. Sci. Comput., 74 (2018), 122-144.
doi: 10.1007/s10915-017-0427-6.
|
[11]
|
Z. Luo and R. Liu, Mixed finite element method analysis and numerical solitary for the RLW equation, SIAM J. Numer. Anal., 36 (1999), 89-104.
doi: 10.1137/S0036142996312999.
|
[12]
|
L. Mei and Y. Chen, Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Comput. Phys. Commun., 183 (2012), 1609-1616.
doi: 10.1016/j.cpc.2012.02.029.
|
[13]
|
S. Zaki, Solitary waves of the splitted RLW equation, Comput. Phys. Comm., 138 (2001), 80-91.
doi: 10.1016/S0010-4655(01)00200-4.
|
[14]
|
K. Feng and M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-01777-3.
|
[15]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Berlin: Springer-Verlag, 2006.
|
[16]
|
C. Bubb and M. Piggot, Geometric integration and its application, Handbook of Numerical Analysis, Vol. XI, 35–139, Handb. Numer. Anal., XI, North-Holland, Amsterdam, 2003.
|
[17]
|
Y. Sun and M. Qin, A multi-symplectic scheme for RLW equation, J. Comput. Math., 22 (2004), 611-621.
|
[18]
|
J. Cai, Multi-symplectic numerical method for the regularized long-wave equation, Comput. Phys. Commun., 180 (2009), 1821-1831.
doi: 10.1016/j.cpc.2009.05.009.
|
[19]
|
J. Cai, A new explicit multi-symplectic scheme for the regularized long-wave equation, J. Math. Phys., 50 (2009), 013535, 16pp.
doi: 10.1063/1.3068404.
|
[20]
|
Q. Hong, Y. Wang and Y. Gong, Optimal error estimate of two linear and momentum-preserving Fourier pseudo-spectral schemes for the RLW equation, arXiv: 1806.08948.
|
[21]
|
J. Cai, C. Bai and H. Zhang, Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrödinger equations, J. Comput. Phys., 374 (2018), 281-299.
doi: 10.1016/j.jcp.2018.07.050.
|
[22]
|
Y. Gong, J. Cai and Y. Wang, Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys., 279 (2014), 80-102.
doi: 10.1016/j.jcp.2014.09.001.
|
[23]
|
J. Hong, L. Ji and Z. Liu, Compact and efficient conservative schemes for coupled nonlinear Schrödinger equations, Appl. Numer. Math., 127 (2018), 164-178.
|
[24]
|
Q. Hong, Y. Wang and Q. Du, Two new energy-preserving algorithms for generalized fifth-order KdV equation, Adv. Appl. Math. Mech., 9 (2017), 1206-1224.
doi: 10.4208/aamm.OA-2016-0044.
|
[25]
|
Q. Hong, Y. Wang and J. Wang, Optimal error estimate of a linear Fourier pseudo-spectral scheme for the two dimensional Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 468 (2018), 817-838.
doi: 10.1016/j.jmaa.2018.08.045.
|
[26]
|
L. Kong, J. Hong, L. Ji and P. Zhu, Compact and efficient conservative schemes for coupled nonlinear Schrödinger equations, Numer. Methods Partial Differential Equations, 31 (2015), 1814-1843.
doi: 10.1002/num.21969.
|
[27]
|
Z. Sun and D. Zhao, On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 59 (2010), 3286-3300.
doi: 10.1016/j.camwa.2010.03.012.
|
[28]
|
T. Wang, B. Guo and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243 (2013), 382-399.
doi: 10.1016/j.jcp.2013.03.007.
|
[29]
|
X. Qian, H. Fu and S. Song, Structure-preserving wavelet algorithms for the nonlinear Dirac model, Adv. Appl. Math. Mech., 9 (2017), 964-989.
doi: 10.4208/aamm.2016.m1463.
|
[30]
|
J. Wang and Y. Wang, Numerical analysis of a new conservative scheme for the coupled nonlinear Schrödinger equations, Int. J. Comput. Math., 95 (2018), 1583-1608.
doi: 10.1080/00207160.2017.1322692.
|
[31]
|
D. Furihata, Finite difference schemes for $\frac{\partial u}{\partial t} = (\frac{\partial}{\partial x})^{\alpha}\frac{\delta G}{\delta u}$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377.
|
[32]
|
D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171 (2001), 425-447.
doi: 10.1006/jcph.2001.6775.
|
[33]
|
J. Cai, Y. Gong and H. Liang, Novel implicit/explicit local conservative scheme for the regularized long-wave equation and convergence analysis, J. Math. Anal. Appl., 447 (2017), 17-31.
doi: 10.1016/j.jmaa.2016.09.047.
|
[34]
|
J. Cai and Q. Hong, Efficient local structure-preserving schemes for the RLW-type equation, Numer. Methods Partial Differential Equations, 33 (2017), 1678-1691.
doi: 10.1002/num.22162.
|
[35]
|
T. Wang, L. Zhang and F. Chen, Conservative schemes for the symmetric regularized long wave equations, Appl. Math. Comput., 190 (2007), 1063-1080.
doi: 10.1016/j.amc.2007.01.105.
|
[36]
|
M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for pdes, SIAM J. Sci. Comput., 33 (2011), 2318-2340.
doi: 10.1137/100810174.
|
[37]
|
S. Badia, F. Guillen-Gonzalez and J. Gutierrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys., 230 (2011), 1686-1706.
doi: 10.1016/j.jcp.2010.11.033.
|
[38]
|
F. Guillen and G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68 (2014), 821-846.
doi: 10.1016/j.camwa.2014.07.014.
|
[39]
|
Y. Gong, J. Zhao and Q. Wang, Linear second order in time energy stable schemes for hydrodynamic models of binary mixtures based on a spatially pseudospectral approximation, Adv. Comput. Math., 44 (2018), 1573-1600.
doi: 10.1007/s10444-018-9597-5.
|
[40]
|
X. Yang and D. Han, Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal equation, J. Comput. Phys., 333 (2017), 1116-1134.
doi: 10.1016/j.jcp.2016.10.020.
|
[41]
|
J. Zhao, X. Yang, Y. Gong and Q. Wang, A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals, Comput. Methods Appl. Mech. Engrg., 318 (2017), 803-825.
doi: 10.1016/j.cma.2017.01.031.
|
[42]
|
Y. Gong, Y. Wang and Q. Wang, Linear-implicit conservative schemes based on energy quadratization for Hamiltonian PDEs, submitted.
|
[43]
|
Y. Gong, Q. Wang, Y. Wang and J. Cai, A conservative Fourier pseudospectral method for the nonlinear Schrodinger equation, J. Comput. Phys., 328 (2017), 354-370.
doi: 10.1016/j.jcp.2016.10.022.
|
[44]
|
J. Cai, Some linearly and nonlinearly implicit schemes for the numerical solutions of the regularized long-wave equation, Appl. Math. Comput., 217 (2011), 9948-9955.
doi: 10.1016/j.amc.2011.04.040.
|