[1]
|
A. Agrawal, L. Djenidi and R. A. Antonia, Simulation of gas flow in microchannels with a sudden expansion or contraction, Journal of Fluid Mechanics, 530 (2005), 135-144.
doi: 10.1017/S0022112005003691.
|
[2]
|
J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiró and S. J. Sherwin, Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Internat. J. Numer. Methods Fluids, 56 (2008), 1061-1067.
doi: 10.1002/fld.1606.
|
[3]
|
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. New York, 2000.
|
[4]
|
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314 (electronic).
doi: 10.3934/nhm.2006.1.295.
|
[5]
|
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41–56 (electronic).
doi: 10.3934/nhm.2006.1.41.
|
[6]
|
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495–511 (electronic).
doi: 10.3934/nhm.2006.1.495.
|
[7]
|
R. M. Colombo and M. Garavello, On the $p$-system at a junction, In Control Methods in PDE-dynamical Systems, volume 426 of Cont. Math., pages 193–217. AMS, Providence, 2007.
doi: 10.1090/conm/426/08189.
|
[8]
|
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841.
|
[9]
|
R. M. Colombo, G. Guerra, M. Herty and V. Sachers, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050.
|
[10]
|
R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298.
|
[11]
|
R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the $p$-system, J. Math. Anal. Appl., 361 (2010), 440-456.
doi: 10.1016/j.jmaa.2009.07.022.
|
[12]
|
J. C. de Almeida, J. A. Velásquez and R. Barbieri, A methodology for calculating the natural gas compressibility factor for a distribution network, Petroleum Science and Technology, 32 (2014), 2616-2624.
doi: 10.1080/10916466.2012.755194.
|
[13]
|
J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.
doi: 10.1016/S0005-1098(03)00109-2.
|
[14]
|
E. Dekama and J. Calverta, Pressure losses in sudden transitions between square and rectangular ducts of the same cross-sectional area, Int. J. Heat Fluid Flow, 9 (1988), 2-7.
doi: 10.1016/0142-727X(88)90023-9.
|
[15]
|
M. Á. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs, Multiscale Model. Simul., 4 (2005), 215–236 (electronic).
doi: 10.1137/030602010.
|
[16]
|
L. Formaggia, D. Lamponi, A. Veneziani and D. Tuveri, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273-288.
doi: 10.1080/10255840600857767.
|
[17]
|
L. Formaggia, A. Quarteroni and A. Veneziani, editors, Cardiovascular Mathematics, volume 1 of MS & A, Springer-Verlag Italia, Milan, 2009.
doi: 10.1007/978-88-470-1152-6.
|
[18]
|
M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, volume 9 of AIMS Series on Applied Mathematics, AIMS, Springfield, MO, 2016.
|
[19]
|
P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.
doi: 10.1016/j.anihpc.2004.02.002.
|
[20]
|
G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded sources, SIAM J. Math. Anal., 41 (2009), 1164-1189.
doi: 10.1137/080735436.
|
[21]
|
M. Gugat, Nodal control of conservation laws on networks. Sensitivity calculations for the
control of systems of conservation laws with source terms on networks, Cagnol, John (ed.) et
al., Chapman & Hall/CRC. Lecture Notes in Pure and Appl. Math., 240 (2005), 201–215.
doi: 10.1201/9781420027426.ch16.
|
[22]
|
M. Gugat, M. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.
doi: 10.3934/nhm.2017016.
|
[23]
|
M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11.
doi: 10.1016/S0294-1449(02)00004-5.
|
[24]
|
M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.
doi: 10.1137/070688535.
|
[25]
|
M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.
doi: 10.1002/fld.1531.
|
[26]
|
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497–515 (electronic).
doi: 10.1137/S0036141097327033.
|
[27]
|
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164–180 (electronic).
doi: 10.1137/S0363012900375664.
|
[28]
|
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics. Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253.
|
[29]
|
T.-M. Liou, C.-F. Kao and S.-M. Wu, The flow in a rectangular channel with sudden contraction and expansion, Chinese Institute of Engineers Journal, 10 (1987), 139-146.
|
[30]
|
T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.
doi: 10.1007/BF01976043.
|
[31]
|
G. Montenegro and A. Onorati, Modeling of silencers for I.C. engine intake and exhaust systems by means of an integrated 1D-multiD approach, volume 1 of SAE Int. J. Engines, pages 466–479. SAE 2008 Int. Congress & Exp., Detroit, Michigan, 2008.
doi: 10.4271/2008-01-0677.
|
[32]
|
E. Rathakrishnana and A. K. Sreekanthb, Rarefied flow through sudden enlargements, Fluid Dynamics Research, 16 (1995), 131-145.
doi: 10.1016/0169-5983(95)00006-Y.
|
[33]
|
G. A. Reigstad, T. Flåtten, N. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.
doi: 10.1142/S0219891615500022.
|
[34]
|
J. S. Vrentas and J. L. Duda, Flow of a newtonian fluid through a sudden contraction, Flow, Turbulence and Combustion, 28 (1973), 241-260.
doi: 10.1007/BF00413071.
|
[35]
|
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.
doi: 10.1002/9781118032954.
|
[36]
|
D. E. Winterbone and R. J. Pearson, Theory of Engine Manifold Design, Professional Engineering Publishing, 2000.
|