Article Contents
Article Contents

# On the 1D modeling of fluid flowing through a Junction

• * Corresponding author: Rinaldo M. Colombo

The authors are supported by the GNAMPA–2018 project

• A compressible fluid flows through a junction between two different pipes. Its evolution is described by the 2D or 3D Euler equations, whose analytical theory is far from complete and whose numerical treatment may be rather costly. This note compares different 1D approaches to this phenomenon.

Mathematics Subject Classification: Primary: 35L65.

 Citation:

• Figure 1.  Left, the densities $\check \varphi_{{l}} (\bar u)$ and $\hat \varphi_{{l}} (\bar u)$, along a $1$–Lax curve; right, the densities $\check \varphi_{{r}} (\bar u)$ and $\hat \varphi_{{r}} (\bar u)$ along a reversed $2$-Lax curve; see (6)

Figure 2.  The situations of corollaries 1, 2 and 3

Figure 3.  Singular limit on the section of the pipe. Left, a pipe with a section satisfying (12). From left to right, the section of the pipe gets steeper and, right, it ends being a step function

Table 1.  Various definitions of $\Phi_2$

 $\Phi_2(a_l, u_l, a_r, u_r)$ Meaning (L) $a_r P(u_r) - a_l P(u_l)$ Conservation of linear momentum, see [7] (p) $p(\rho_r) - p(\rho_l)$ Equal pressure, typically motivated by static equilibrium, see [4,5] (P) $P(u_r) - P(u_l)$ Equal dynamic pressure, see [6,8] (S) $\begin{array}{l} \!\! a_r P(u_r) - a_l P(u_l)\\ - \int_{a_l}^{a_r} p \left( R(\alpha;\rho_l, q_l) \right) \, d\alpha\!\! \end{array}$ Limit of the condition for smooth variations of the pipes' sections, see [11,20]
•  [1] A. Agrawal, L. Djenidi and R. A. Antonia, Simulation of gas flow in microchannels with a sudden expansion or contraction, Journal of Fluid Mechanics, 530 (2005), 135-144.  doi: 10.1017/S0022112005003691. [2] J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiró and S. J. Sherwin, Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Internat. J. Numer. Methods Fluids, 56 (2008), 1061-1067.  doi: 10.1002/fld.1606. [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. New York, 2000. [4] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314 (electronic). doi: 10.3934/nhm.2006.1.295. [5] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41–56 (electronic). doi: 10.3934/nhm.2006.1.41. [6] R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495–511 (electronic). doi: 10.3934/nhm.2006.1.495. [7] R. M. Colombo and M. Garavello, On the $p$-system at a junction, In Control Methods in PDE-dynamical Systems, volume 426 of Cont. Math., pages 193–217. AMS, Providence, 2007. doi: 10.1090/conm/426/08189. [8] R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841. [9] R. M. Colombo, G. Guerra, M. Herty and V. Sachers, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. [10] R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298. [11] R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the $p$-system, J. Math. Anal. Appl., 361 (2010), 440-456.  doi: 10.1016/j.jmaa.2009.07.022. [12] J. C. de Almeida, J. A. Velásquez and R. Barbieri, A methodology for calculating the natural gas compressibility factor for a distribution network, Petroleum Science and Technology, 32 (2014), 2616-2624.  doi: 10.1080/10916466.2012.755194. [13] J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica J. IFAC, 39 (2003), 1365-1376.  doi: 10.1016/S0005-1098(03)00109-2. [14] E. Dekama and J. Calverta, Pressure losses in sudden transitions between square and rectangular ducts of the same cross-sectional area, Int. J. Heat Fluid Flow, 9 (1988), 2-7.  doi: 10.1016/0142-727X(88)90023-9. [15] M. Á. Fernández, V. Milišić and A. Quarteroni, Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs, Multiscale Model. Simul., 4 (2005), 215–236 (electronic). doi: 10.1137/030602010. [16] L. Formaggia, D. Lamponi, A. Veneziani and D. Tuveri, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273-288.  doi: 10.1080/10255840600857767. [17] L. Formaggia, A. Quarteroni and A. Veneziani, editors, Cardiovascular Mathematics, volume 1 of MS & A, Springer-Verlag Italia, Milan, 2009. doi: 10.1007/978-88-470-1152-6. [18] M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, volume 9 of AIMS Series on Applied Mathematics, AIMS, Springfield, MO, 2016. [19] P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902.  doi: 10.1016/j.anihpc.2004.02.002. [20] G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded sources, SIAM J. Math. Anal., 41 (2009), 1164-1189.  doi: 10.1137/080735436. [21] M. Gugat, Nodal control of conservation laws on networks. Sensitivity calculations for the control of systems of conservation laws with source terms on networks, Cagnol, John (ed.) et al., Chapman & Hall/CRC. Lecture Notes in Pure and Appl. Math., 240 (2005), 201–215. doi: 10.1201/9781420027426.ch16. [22] M. Gugat, M. Herty and S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371-380.  doi: 10.3934/nhm.2017016. [23] M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11.  doi: 10.1016/S0294-1449(02)00004-5. [24] M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535. [25] M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Internat. J. Numer. Methods Fluids, 56 (2008), 485-506.  doi: 10.1002/fld.1531. [26] H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497–515 (electronic). doi: 10.1137/S0036141097327033. [27] G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164–180 (electronic). doi: 10.1137/S0363012900375664. [28] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253. [29] T.-M. Liou, C.-F. Kao and S.-M. Wu, The flow in a rectangular channel with sudden contraction and expansion, Chinese Institute of Engineers Journal, 10 (1987), 139-146. [30] T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260.  doi: 10.1007/BF01976043. [31] G. Montenegro and A. Onorati, Modeling of silencers for I.C. engine intake and exhaust systems by means of an integrated 1D-multiD approach, volume 1 of SAE Int. J. Engines, pages 466–479. SAE 2008 Int. Congress & Exp., Detroit, Michigan, 2008. doi: 10.4271/2008-01-0677. [32] E. Rathakrishnana and A. K. Sreekanthb, Rarefied flow through sudden enlargements, Fluid Dynamics Research, 16 (1995), 131-145.  doi: 10.1016/0169-5983(95)00006-Y. [33] G. A. Reigstad, T. Flåtten, N. Erland Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022. [34] J. S. Vrentas and J. L. Duda, Flow of a newtonian fluid through a sudden contraction, Flow, Turbulence and Combustion, 28 (1973), 241-260.  doi: 10.1007/BF00413071. [35] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication. doi: 10.1002/9781118032954. [36] D. E. Winterbone and R. J. Pearson, Theory of Engine Manifold Design, Professional Engineering Publishing, 2000.

Figures(3)

Tables(1)