[1]
|
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Math. Sbornik, 30 (1952), 181–196 (in Russian); Transl. Amer. Math. Soc., 100 (1954), 19pp.
|
[2]
|
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008.
|
[3]
|
N. N. Bogoliubov, On Some Statistical Methods in Mathematical Physics, Akademiya Nauk Ukrainsko$ \mathop {\text{i}}\limits^ \vee $, 1945.
|
[4]
|
N. N. Bogoliubov and N. Krylov, The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations, Ukrainian Academy of Science, 1934.
|
[5]
|
X. Cen, J. Llibre and M. Zhang, Periodic solutions and their stability of some higher-order positively homogenous differential equations, Chaos, Solitons & Fractals, 106 (2018), 285-288.
doi: 10.1016/j.chaos.2017.11.032.
|
[6]
|
X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl., 59 (2010), 3836-3848.
doi: 10.1016/j.camwa.2010.04.019.
|
[7]
|
X. Chen, J. Llibre and W. Zhang, Averaging approach to cyclicity of Hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 3953-3965.
doi: 10.3934/dcdsb.2017203.
|
[8]
|
X. Chen, V. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076.
doi: 10.1016/j.jmaa.2015.07.036.
|
[9]
|
X. Chen and W. Zhang, Normal forms of planar switching systems, Disc. Cont. Dyn. Syst., 36 (2016), 6715-6736.
doi: 10.3934/dcds.2016092.
|
[10]
|
C. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2007.
|
[11]
|
B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar systems, J. Math. Anal. Appl., 253 (2001), 671-690.
doi: 10.1006/jmaa.2000.7188.
|
[12]
|
A. F. Filippov, Differential Equation with Discontinuous Right-Hand Sides, Kluwer Academic, Amsterdam, 1988.
doi: 10.1007/978-94-015-7793-9.
|
[13]
|
A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Int. J. Bifurc. Chaos, 13 (2003), 1755-1765.
doi: 10.1142/S0218127403007618.
|
[14]
|
J. Giné, M. Grau and J. Llibre, Averaging theory at any order for computing periodic orbits, Physica D, 250 (2013), 58-65.
doi: 10.1016/j.physd.2013.01.015.
|
[15]
|
J. K. Hale and H. Hoçak, Dynamics and Bifurcations, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-1-4612-4426-4.
|
[16]
|
M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Diff. Equa., 248 (2010), 2399-2416.
doi: 10.1016/j.jde.2009.10.002.
|
[17]
|
Yu. Ilyashenko, Centennial history of Hilbert's $16$th problem, Bull. (New Series) Amer. Math. Soc., 39 (2002), 301-354.
doi: 10.1090/S0273-0979-02-00946-1.
|
[18]
|
M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103843.
|
[19]
|
J. Li, Hilbert's $16$th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.
doi: 10.1142/S0218127403006352.
|
[20]
|
J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583.
doi: 10.1088/0951-7715/27/3/563.
|
[21]
|
J. Llibre, D. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non–smooth dynamical systems, Bull. Sci. math., 139 (2015), 229-244.
doi: 10.1016/j.bulsci.2014.08.011.
|
[22]
|
J. Llibre, D. D. Novaes and M. A. Teixeira, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dynamics, 82 (2015), 1159-1175.
doi: 10.1007/s11071-015-2223-x.
|
[23]
|
O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.
doi: 10.1016/j.physd.2012.08.002.
|
[24]
|
P. Patou, Sur le mouvement d'un système soumis à des forces à courte période, Bull. Soc. Math. France, 56 (1928), 98-139.
|
[25]
|
D. J. W. Simpson, Bifurcations in Piecewise–Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol 69, World Scientific, Singapore, 2010.
doi: 10.1142/7612.
|
[26]
|
H. Żoldek, Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860.
doi: 10.1088/0951-7715/8/5/011.
|