-
Previous Article
On the dynamics of a durable commodity market
- DCDS-B Home
- This Issue
-
Next Article
Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems
Coinfection in a stochastic model for bacteriophage systems
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Avinguda de l'Eix Central, 08193 Bellaterra, Spain |
2. | Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain |
A system modeling bacteriophage treatments with coinfections in a noisy context is analysed. We prove that in a small noise regime, the system converges in the long term to a bacteria-free equilibrium. Moreover, we compare the treatment with coinfection with the treatment without coinfection, showing how coinfection affects the convergence to the bacteria-free equilibrium.
References:
[1] |
S. T. Abedon,
Lysis from without, Bacteriophage, 1 (2011), 46-49.
doi: 10.4161/bact.1.1.13980. |
[2] |
S. T. Abedon,
Bacteriophage secondary infection, Virologica Sinica, 30 (2015), 3-10.
doi: 10.1007/s12250-014-3547-2. |
[3] |
S. T. Abedon, P. García, P. Mullany and R. Aminov, Phage therapy: Past, present and future, Frontiers in Microbiology, 8 (2017), 201700981.
doi: 10.3389/978-2-88945-251-4. |
[4] |
S. Alizon, Co-infection and super-infection models in evolutionary epidemiology, Interface Focus, 3 (2013), 20130031.
doi: 10.1098/rsfs.2013.0031. |
[5] |
M. van Baalen and M. W. Sabelis,
The dynamics of multiple infection and the evolution of virulence, Am. Nat., 146 (1995), 881-910.
doi: 10.1086/285830. |
[6] |
X. Bardina, D. Bascompte, C. Rovira and S. Tindel,
An analysis of a stochastic model for bacteriophage systems, Mathematical Biosciences, 241 (2013), 99-108.
doi: 10.1016/j.mbs.2012.09.009. |
[7] |
C. Bardina, D. Spricigo, M. Corts and M. Llagostera,
Significance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry, Applied and Environmental Microbiology, 78 (2012), 6600-6607.
doi: 10.1128/AEM.01257-12. |
[8] |
C. Barril, À. Calsina and J. Ripoll,
On the reproduction number of a gut microbiota model, Bull. Math. Biol., 79 (2017), 2727-2746.
doi: 10.1007/s11538-017-0352-8. |
[9] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Anal. Real World Appl., 2 (2001), 35-74.
doi: 10.1016/S0362-546X(99)00285-0. |
[10] |
B. J. M. Bohannan and R. E. Lenski,
Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377.
doi: 10.1046/j.1461-0248.2000.00161.x. |
[11] |
S. N. Busenberg and K. L. Cooke,
The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol., 10 (1980), 13-32.
doi: 10.1007/BF00276393. |
[12] |
B. J. Cairns, A. R. Timms, V. A. A. Jansen, I. F. Connerton and R. J. H. Payne, Quantitative models of in vitro bacteriophage host dynamics and their application to phage therapy, PLoS Pathog., 5 (2009), e1000253.
doi: 10.1371/journal.ppat.1000253. |
[13] |
À. Calsina, J. M. Palmada and J. Ripoll,
Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models and Methods in Appl. Sci., 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[14] |
A. Campbell,
Conditions for the existence of bacteriophages, Evolution, 15 (1961), 153-165.
doi: 10.1111/j.1558-5646.1961.tb03139.x. |
[15] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. -O. Walther, Delay Equations Functional-, Complex-, and Nonlinear Analysis, Springer, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[16] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics, 2093. Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[17] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.
![]() ![]() |
[18] |
B. R. Levin and J. J. Bull,
Population and evolutionary dynamics of phage therapy., Nature Reviews Microbiology, 2 (2004), 166-173.
doi: 10.1038/nrmicro822. |
[19] |
B. R. Levin and J. J. Bull,
Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics, Am. Nat., 147 (1996), 881-898.
doi: 10.1086/285884. |
[20] |
B. R. Levin, F. M. Stewart and L. Chao,
Resouce-limited growth, competition, and predation: A model an experimental studies with bacteria and bacteriophage, Am. Nat., 111 (1977), 3-24.
doi: 10.1086/283134. |
[21] |
J. Mosquera and F. R. Adler,
Evolution of virulence: A unified framework for coinfection and superinfection, J. Theor. Biol., 195 (1998), 293-313.
doi: 10.1006/jtbi.1998.0793. |
[22] |
R. J. H. Payne and V. A. A. Jansen,
Pharmacokinetic principles of bacteriophage therapy, Clin. Pharmacokinetics, 42 (2003), 315-325.
doi: 10.2165/00003088-200342040-00002. |
[23] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[24] |
H. L. Smith and R. T. Trevino,
Bacteriophage infection dynamics: Multiple host binding sites, Math. Model. Nat. Phenom., 4 (2009), 109-134.
doi: 10.1051/mmnp/20094604. |
[25] |
H. L. Smith and H. R. Thieme,
Persistence of bacteria and phages in a chemostat, J. Math. Biol., 64 (2012), 951-979.
doi: 10.1007/s00285-011-0434-4. |
[26] |
G. Stent, Molecular Biology of Bacterial Viruses, W. H. Freeman and Co., London, 1963. |
[27] |
R. Weld, C. Butts and J. Heinemann,
Models of phage growth and their applicability to phage therapy, J. Theor. Biol., 227 (2004), 1-11.
doi: 10.1016/S0022-5193(03)00262-5. |
show all references
References:
[1] |
S. T. Abedon,
Lysis from without, Bacteriophage, 1 (2011), 46-49.
doi: 10.4161/bact.1.1.13980. |
[2] |
S. T. Abedon,
Bacteriophage secondary infection, Virologica Sinica, 30 (2015), 3-10.
doi: 10.1007/s12250-014-3547-2. |
[3] |
S. T. Abedon, P. García, P. Mullany and R. Aminov, Phage therapy: Past, present and future, Frontiers in Microbiology, 8 (2017), 201700981.
doi: 10.3389/978-2-88945-251-4. |
[4] |
S. Alizon, Co-infection and super-infection models in evolutionary epidemiology, Interface Focus, 3 (2013), 20130031.
doi: 10.1098/rsfs.2013.0031. |
[5] |
M. van Baalen and M. W. Sabelis,
The dynamics of multiple infection and the evolution of virulence, Am. Nat., 146 (1995), 881-910.
doi: 10.1086/285830. |
[6] |
X. Bardina, D. Bascompte, C. Rovira and S. Tindel,
An analysis of a stochastic model for bacteriophage systems, Mathematical Biosciences, 241 (2013), 99-108.
doi: 10.1016/j.mbs.2012.09.009. |
[7] |
C. Bardina, D. Spricigo, M. Corts and M. Llagostera,
Significance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry, Applied and Environmental Microbiology, 78 (2012), 6600-6607.
doi: 10.1128/AEM.01257-12. |
[8] |
C. Barril, À. Calsina and J. Ripoll,
On the reproduction number of a gut microbiota model, Bull. Math. Biol., 79 (2017), 2727-2746.
doi: 10.1007/s11538-017-0352-8. |
[9] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Anal. Real World Appl., 2 (2001), 35-74.
doi: 10.1016/S0362-546X(99)00285-0. |
[10] |
B. J. M. Bohannan and R. E. Lenski,
Linking genetic change to community evolution: Insights from studies of bacteria and bacteriophage, Ecology Letters, 3 (2000), 362-377.
doi: 10.1046/j.1461-0248.2000.00161.x. |
[11] |
S. N. Busenberg and K. L. Cooke,
The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol., 10 (1980), 13-32.
doi: 10.1007/BF00276393. |
[12] |
B. J. Cairns, A. R. Timms, V. A. A. Jansen, I. F. Connerton and R. J. H. Payne, Quantitative models of in vitro bacteriophage host dynamics and their application to phage therapy, PLoS Pathog., 5 (2009), e1000253.
doi: 10.1371/journal.ppat.1000253. |
[13] |
À. Calsina, J. M. Palmada and J. Ripoll,
Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models and Methods in Appl. Sci., 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[14] |
A. Campbell,
Conditions for the existence of bacteriophages, Evolution, 15 (1961), 153-165.
doi: 10.1111/j.1558-5646.1961.tb03139.x. |
[15] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. -O. Walther, Delay Equations Functional-, Complex-, and Nonlinear Analysis, Springer, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[16] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics, 2093. Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[17] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.
![]() ![]() |
[18] |
B. R. Levin and J. J. Bull,
Population and evolutionary dynamics of phage therapy., Nature Reviews Microbiology, 2 (2004), 166-173.
doi: 10.1038/nrmicro822. |
[19] |
B. R. Levin and J. J. Bull,
Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics, Am. Nat., 147 (1996), 881-898.
doi: 10.1086/285884. |
[20] |
B. R. Levin, F. M. Stewart and L. Chao,
Resouce-limited growth, competition, and predation: A model an experimental studies with bacteria and bacteriophage, Am. Nat., 111 (1977), 3-24.
doi: 10.1086/283134. |
[21] |
J. Mosquera and F. R. Adler,
Evolution of virulence: A unified framework for coinfection and superinfection, J. Theor. Biol., 195 (1998), 293-313.
doi: 10.1006/jtbi.1998.0793. |
[22] |
R. J. H. Payne and V. A. A. Jansen,
Pharmacokinetic principles of bacteriophage therapy, Clin. Pharmacokinetics, 42 (2003), 315-325.
doi: 10.2165/00003088-200342040-00002. |
[23] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[24] |
H. L. Smith and R. T. Trevino,
Bacteriophage infection dynamics: Multiple host binding sites, Math. Model. Nat. Phenom., 4 (2009), 109-134.
doi: 10.1051/mmnp/20094604. |
[25] |
H. L. Smith and H. R. Thieme,
Persistence of bacteria and phages in a chemostat, J. Math. Biol., 64 (2012), 951-979.
doi: 10.1007/s00285-011-0434-4. |
[26] |
G. Stent, Molecular Biology of Bacterial Viruses, W. H. Freeman and Co., London, 1963. |
[27] |
R. Weld, C. Butts and J. Heinemann,
Models of phage growth and their applicability to phage therapy, J. Theor. Biol., 227 (2004), 1-11.
doi: 10.1016/S0022-5193(03)00262-5. |
[1] |
Zhun Han, Hal L. Smith. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (4) : 737-765. doi: 10.3934/mbe.2012.9.737 |
[2] |
Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 495-520. doi: 10.3934/dcdsb.2002.2.495 |
[3] |
Britnee Crawford, Christopher M. Kribs-Zaleta. The impact of vaccination and coinfection on HPV and cervical cancer. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 279-304. doi: 10.3934/dcdsb.2009.12.279 |
[4] |
Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399 |
[5] |
Manfred Denker, Samuel Senti, Xuan Zhang. Fluctuations of ergodic sums on periodic orbits under specification. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4665-4687. doi: 10.3934/dcds.2020197 |
[6] |
Genghong Lin, Jianshe Yu, Zhan Zhou, Qiwen Sun, Feng Jiao. Fluctuations of mRNA distributions in multiple pathway activated transcription. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1543-1568. doi: 10.3934/dcdsb.2018219 |
[7] |
Mengshi Shu, Rui Fu, Wendi Wang. A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1361-1377. doi: 10.3934/mbe.2017070 |
[8] |
Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 |
[9] |
Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145 |
[10] |
Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 |
[11] |
Jean René Chazottes, E. Ugalde. Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 565-586. doi: 10.3934/dcdsb.2005.5.565 |
[12] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[13] |
Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239 |
[14] |
François Ledrappier, Omri Sarig. Fluctuations of ergodic sums for horocycle flows on $\Z^d$--covers of finite volume surfaces. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 247-325. doi: 10.3934/dcds.2008.22.247 |
[15] |
Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns. Networks and Heterogeneous Media, 2013, 8 (1) : 261-273. doi: 10.3934/nhm.2013.8.261 |
[16] |
John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843 |
[17] |
Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937 |
[18] |
David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161. |
[19] |
Tyrone E. Duncan. Some topics in stochastic control. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1361-1373. doi: 10.3934/dcdsb.2010.14.1361 |
[20] |
Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]