December  2019, 24(12): 6725-6743. doi: 10.3934/dcdsb.2019164

Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations

Department of Mathematics and Statistics, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China

* Corresponding author: Zhuan Ye

Received  July 2018 Revised  February 2019 Published  December 2019 Early access  July 2019

Fund Project: The author is supported by the National Natural Science Foundation of China (No. 11701232) and the Natural Science Foundation of Jiangsu Province (No. BK20170224).

This paper addresses the Cauchy problem of the three-dimensional inhomogeneous incompressible micropolar equations. We prove the global existence and exponential decay-in-time of strong solution with vacuum over the whole space $ \mathbb{R}^{3} $ provided that the initial data are sufficiently small. The initial vacuum is allowed.

Citation: Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164
References:
[1]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[2]

H. AbidiG. L. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[3]

S. N. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990.

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.

[5]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.

[6]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.  doi: 10.1007/s00021-013-0133-6.

[7]

R. Danchin and P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[8]

R. Danchin and P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[9]

B. -Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.

[10]

B. -Q. DongJ. H. WuX. J. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162.  doi: 10.3934/dcds.2018180.

[11]

B. -Q. Dong and Z. F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.  doi: 10.1016/j.jde.2010.03.016.

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.

[13]

L. C. F. Ferreira and J. C. Precioso, Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces, Z. Angew. Math. Phys., 64 (2013), 1699-1710.  doi: 10.1007/s00033-013-0310-8.

[14]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.

[15]

C. He, J. Li and B. Lü, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, arXiv: 1709.05608v1.

[16]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.

[17]

A. V. Kažhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. 

[18]

J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density, SIAM J. Math. Anal., 18 (1987), 89-96.  doi: 10.1137/0518007.

[19]

O. Ladyzhenskaya and V. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids, J. Soviet Math., 9 (1978), 697-749. 

[20]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.

[21]

P. -L. Lions, Mathematical Topics in Fluid mMechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, vol. 1. Clarendon Press/Oxford University Press, New York, 1996.

[22]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5.

[23]

G. Łukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 12 (1988), 83-97. 

[24]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 13 (1989), 105-120. 

[25]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.

[26]

M. PaicuP. Zhang and Z. F. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.

[27]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.

[28]

D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, arXiv: 1806.04464v1.

[29]

L. T. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.  doi: 10.1002/mma.1491.

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid systemin a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507-1526.  doi: 10.1002/mma.617.

[31]

B. Q. Yuan, On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036.  doi: 10.1090/S0002-9939-10-10232-9.

[32]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.

[33]

P. X. ZhangC. Zhao and J. W. Zhang, Global regularity of the three-dimensional equations for nonhomogeneous incompressible fluids, Nonlinear Anal., 110 (2014), 61-76.  doi: 10.1016/j.na.2014.07.014.

[34]

P. X. Zhang and M. X. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13–34, https://doi.org/10.1007/s10440-018-0202-1. doi: 10.1007/s10440-018-0202-1.

show all references

References:
[1]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[2]

H. AbidiG. L. Gui and P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[3]

S. N. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990.

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.

[5]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.

[6]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.  doi: 10.1007/s00021-013-0133-6.

[7]

R. Danchin and P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[8]

R. Danchin and P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[9]

B. -Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.

[10]

B. -Q. DongJ. H. WuX. J. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162.  doi: 10.3934/dcds.2018180.

[11]

B. -Q. Dong and Z. F. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.  doi: 10.1016/j.jde.2010.03.016.

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.

[13]

L. C. F. Ferreira and J. C. Precioso, Existence of solutions for the 3D-micropolar fluid system with initial data in Besov-Morrey spaces, Z. Angew. Math. Phys., 64 (2013), 1699-1710.  doi: 10.1007/s00033-013-0310-8.

[14]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.

[15]

C. He, J. Li and B. Lü, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, arXiv: 1709.05608v1.

[16]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.

[17]

A. V. Kažhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. 

[18]

J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density, SIAM J. Math. Anal., 18 (1987), 89-96.  doi: 10.1137/0518007.

[19]

O. Ladyzhenskaya and V. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids, J. Soviet Math., 9 (1978), 697-749. 

[20]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.

[21]

P. -L. Lions, Mathematical Topics in Fluid mMechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, vol. 1. Clarendon Press/Oxford University Press, New York, 1996.

[22]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5.

[23]

G. Łukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 12 (1988), 83-97. 

[24]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat., 13 (1989), 105-120. 

[25]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.

[26]

M. PaicuP. Zhang and Z. F. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.

[27]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.

[28]

D. Wang and Z. Ye, Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier-Stokes equations with vacuum, arXiv: 1806.04464v1.

[29]

L. T. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.  doi: 10.1002/mma.1491.

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid systemin a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507-1526.  doi: 10.1002/mma.617.

[31]

B. Q. Yuan, On the regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036.  doi: 10.1090/S0002-9939-10-10232-9.

[32]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.

[33]

P. X. ZhangC. Zhao and J. W. Zhang, Global regularity of the three-dimensional equations for nonhomogeneous incompressible fluids, Nonlinear Anal., 110 (2014), 61-76.  doi: 10.1016/j.na.2014.07.014.

[34]

P. X. Zhang and M. X. Zhu, Global regularity of 3D nonhomogeneous incompressible micropolar fluids, Acta Appl. Math., 161 (2019), 13–34, https://doi.org/10.1007/s10440-018-0202-1. doi: 10.1007/s10440-018-0202-1.

[1]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[2]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[3]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[4]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[5]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[6]

Xin Zhong. Global well-posedness to the nonhomogeneous magneto-micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022102

[7]

Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099

[8]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic and Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[9]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[10]

Yang Liu, Nan Zhou, Renying Guo. Global solvability to the 3D incompressible magneto-micropolar system with vacuum. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022061

[11]

Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033

[12]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[13]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[14]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[15]

Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180

[16]

Xiaojie Yang, Hui Liu, Chengfeng Sun. Global attractors of the 3D micropolar equations with damping term. Mathematical Foundations of Computing, 2021, 4 (2) : 117-130. doi: 10.3934/mfc.2021007

[17]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[18]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[19]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[20]

Wenji Chen, Jianfeng Zhou. Global existence of weak solutions to inhomogeneous Doi-Onsager equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021257

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (260)
  • HTML views (259)
  • Cited by (0)

Other articles
by authors

[Back to Top]