[1]
|
B. Aguda, L. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.
doi: 10.1021/ja00174a030.
|
[2]
|
X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.
doi: 10.1016/j.cam.2009.06.029.
|
[3]
|
G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275.
|
[4]
|
F. Davidson, R. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.
doi: 10.1016/S0096-3003(01)00065-0.
|
[5]
|
D. Erle, K. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.
doi: 10.1016/0025-5564(79)90081-6.
|
[6]
|
T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.
doi: 10.1137/0143082.
|
[7]
|
I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.
doi: 10.1007/978-0-8176-4771-1.
|
[8]
|
A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511608193.
|
[9]
|
A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.
doi: 10.1016/j.febslet.2013.07.031.
|
[10]
|
P. Gray and S. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990.
|
[11]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[12]
|
X. Hou, R. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.
doi: 10.1016/S0898-1221(02)00108-6.
|
[13]
|
D. Huang, Y. Gong, Y. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.
doi: 10.1016/j.mcm.2004.02.041.
|
[14]
|
W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.
doi: 10.1088/0951-7715/29/12/3777.
|
[15]
|
K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.
doi: 10.1016/S0895-7177(02)00115-2.
|
[16]
|
R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.
doi: 10.1016/0022-5193(71)90054-3.
|
[17]
|
Z. Leng, B. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.
doi: 10.1016/j.mcm.2008.03.006.
|
[18]
|
J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.
doi: 10.1098/rspa.1999.0313.
|
[19]
|
J. Merkin, R. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.
doi: 10.1023/A:1004292023428.
|
[20]
|
M. Metcalf, J. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.
doi: 10.1098/rspa.1994.0133.
|
[21]
|
I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700.
doi: 10.1063/1.1668896.
|
[22]
|
J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950.
doi: 10.1090/coll/033.
|
[23]
|
Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.
doi: 10.1016/j.camwa.2003.05.012.
|
[24]
|
Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp.
doi: 10.1142/S0218127415500819.
|
[25]
|
Q. Zhang, L. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.
doi: 10.3934/mbe.2017078.
|
[26]
|
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.
|