\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation analysis of an enzyme-catalyzed reaction system with branched sink

This work is supported by NSFC grant 11831012 and 11771168

Abstract Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • In this paper, we study the local bifurcations of an enzyme-catalyzed reaction system with positive parameters $ \alpha $, $ \beta $, $ \gamma $ and integer $ n\geq 2 $. This system is orbitally equivalent to a polynomial differential system with order $ n+2 $. Although not all coordinates of equilibria can be computed because of the high degree of polynomial, parameter conditions for the coexistence of equilibria and their qualitative properties are obtained. Furthermore, it is proved that this system has various bifurcations, including saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation and Hopf bifurcation. Based on Lyapunov quantities, the order of weak focus is proved to be at most 3. Furthermore, parameter conditions of the exact order of weak focus are obtained. Finally, numerical simulations are employed to illustrate our results.

    Mathematics Subject Classification: Primary: 34C23; Secondary: 92C45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Reaction scheme with branched sink

    Figure 2.  Partition of parameter quadrant for $ (\alpha, \gamma)\in \mathbb{R}_+^2 $

    Figure 3.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.55, 50, 0.1) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.57, 50, 0.1) $ in (B)

    Figure 4.  Phase portraits of system (7) with $ (n, \alpha, \beta, \gamma) = (4, 0.67247, 10, 0.2) $ in (A) and $ (n, \alpha, \beta, \gamma) = (4, 0.672, 10, 0.2) $ in (B)

    Figure 5.  Oscillation of substrate and product in the reaction. Solutions of system (43) with initial value $ (x(0), y(0)) = (0.569, 0.255) $

    Figure 6.  Two limit cycles bifurcate from Hopf bifurcation

    Table 1.  Parameter conditions of equilibria for system (7)

    Possibility of parameters Equilibria
    $ (\alpha, \gamma)\in \mathcal{D}_0\cup \mathcal{D}_4 \cup\mathcal{L}_1 \cup\mathcal{L}_3 \cup \mathcal{P}_0 $ $ E_b $
    $ (\alpha, \gamma)\in \mathcal{L}_4 $ $ E_b $ $ E_0 $
    $ (\alpha, \gamma)\in \mathcal{D}_{1}\cup \mathcal{L}_{2} $ $ E_b $ $ E_1 $
    $ (\alpha, \gamma)\in \mathcal{D}_{2} $ $ E_b $ $ E_2 $
    $ (\alpha, \gamma)\in \mathcal{D}_{3} $ $ E_b $ $ E_1 $ $ E_2 $
     | Show Table
    DownLoad: CSV
  • [1] B. AgudaL. Frisch and L. Olsen, Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction, J. Amer. Chem. Soc., 112 (1990), 6652-6656.  doi: 10.1021/ja00174a030.
    [2] X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232 (2009), 565-581.  doi: 10.1016/j.cam.2009.06.029.
    [3] G. Collins and A. Akritas, Polynomial real root isolation using Descartes rule of signs, in Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, ACM Press, 1976, 272–275.
    [4] F. DavidsonR. Xu and J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002), 165-179.  doi: 10.1016/S0096-3003(01)00065-0.
    [5] D. ErleK. Mayer and T. Plesser, The existence of stable limite cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979), 191-208.  doi: 10.1016/0025-5564(79)90081-6.
    [6] T. Erneux and E. Reiss, Brussellator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246.  doi: 10.1137/0143082.
    [7] I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994. doi: 10.1007/978-0-8176-4771-1.
    [8] A. GoldbeterBiochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511608193.
    [9] A. Goldbeter, Oscillatory enzyme reactions and Michaelis-Menten kinetics, FEBS Letters, 587 (2013), 2778-2784.  doi: 10.1016/j.febslet.2013.07.031.
    [10] P. Gray and  S. ScottChemical Oscillations and Instabilities: Non-linear Chemical Kinetics, Clarendon Press, Oxford, 1990. 
    [11] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. doi: 10.1007/978-1-4612-1140-2.
    [12] X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.
    [13] D. HuangY. GongY. Tang and W. Zhang, Degenerate equilibria at infinity in the generalized Brusselator, Math. Comput. Model., 42 (2005), 167-179.  doi: 10.1016/j.mcm.2004.02.041.
    [14] W. Ko, Bifurcations and asymptotic behavior of positive stead-state of an enzyme-catalyzed reaction-diffusion system, Nonlinearity, 29 (2016), 3777-3809.  doi: 10.1088/0951-7715/29/12/3777.
    [15] K. Kwek and W. Zhang, Periodic solutions and dynamics of a multimolecular reaction system, Math. Comput. Model., 36 (2002), 189-201.  doi: 10.1016/S0895-7177(02)00115-2.
    [16] R. Lefever and G. Nicolis., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30 (1971), 267-284.  doi: 10.1016/0022-5193(71)90054-3.
    [17] Z. LengB. Gao and Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reactions, Math. Comput. Model., 49 (2009), 556-562.  doi: 10.1016/j.mcm.2008.03.006.
    [18] J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999), 285-298.  doi: 10.1098/rspa.1999.0313.
    [19] J. MerkinR. Satnoianu and S. Scott., Travelling waves in a differential flow reactor with simple autocatalytic kinetics, J. Eng. Math., 33 (1998), 157-174.  doi: 10.1023/A:1004292023428.
    [20] M. MetcalfJ. Merkin and S. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. Lond. A, 447 (1994), 155-174.  doi: 10.1098/rspa.1994.0133.
    [21] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695–1700. doi: 10.1063/1.1668896.
    [22] J. Ritt, Differential Algebra, Amer. Math. Soc., Providence, 1950. doi: 10.1090/coll/033.
    [23] Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004), 869-883.  doi: 10.1016/j.camwa.2003.05.012.
    [24] Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifurcat. Chaos, 25 (2015), 1550081, 26pp. doi: 10.1142/S0218127415500819.
    [25] Q. ZhangL. Liu and W. Zhang, Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network, Math. Biosci. Eng., 14 (2017), 1499-1514.  doi: 10.3934/mbe.2017078.
    [26] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, RI, 1992.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(829) PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return