
-
Previous Article
Analysis of time-domain Maxwell's equations in biperiodic structures
- DCDS-B Home
- This Issue
-
Next Article
Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness
Analytical formula and dynamic profile of mRNA distribution
a. | College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China |
b. | Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China |
The stochasticity of transcription can be quantified by mRNA distribution $ P_m(t) $, the probability that there are $ m $ mRNA molecules for the gene at time $ t $ in one cell. However, it still lacks of a standard method to calculate $ P_m(t) $ in a transparent formula. Here, we employ an infinite series method to express $ P_m(t) $ based on the classical two-state model. Intriguingly, we observe that a unimodal distribution of mRNA numbers at steady-state could be transformed from a dynamical bimodal distribution. This indicates that "bet hedging" strategy can be still achieved for the gene that generates phenotypic homogeneity of the cell population. Moreover, the formation and duration of such bimodality are tightly correlated with mRNA synthesis rate, reinforcing the modulation scenario of some inducible genes that manipulates mRNA synthesis rate in response to environmental change. More generally, the method presented here may be implemented to the other stochastic transcription models with constant rates.
References:
[1] |
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781107325937.![]() ![]() |
[2] |
T. M. Apostol, Mathematical Analysis, 2$^{nd}$ edition, Addison-Wesley, Boston, USA, 1974. |
[3] |
R. D. Dar et al., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 17454-17459. Google Scholar |
[4] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Math. Society, Providence, USA, 2010.
doi: 10.1090/gsm/019. |
[5] |
S. Fiering et al., Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor, Genes Dev., 4 (1990), 1823-1834. Google Scholar |
[6] |
D.T. Gillespie,
Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58 (2007), 35-55.
doi: 10.1146/annurev.physchem.58.032806.104637. |
[7] |
I. Golding, J. Paulsson, S. M. Zawilski and E. C. Cox,
Real-time kinetics of gene activity in individual bacteria, Cell, 123 (2005), 1025-1036.
doi: 10.1016/j.cell.2005.09.031. |
[8] |
M. W. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, Amsterdam, 2004.
![]() |
[9] |
S. Iyer-Biswas, F. Hayot and C. Jayaprakash, Stochasticity of gene products from transcriptional pulsing, Phys. Rev. E, 79 (2009), 031911.
doi: 10.1103/PhysRevE.79.031911. |
[10] |
F. Jiao, Q. Sun, G. Lin and J. Yu,
Distribution profiles in gene transcription activated by the cross-talking pathway, Discrete Contin. Dyn. Syst. B, 24 (2019), 2799-2810.
doi: 10.3934/dcdsb.2018275. |
[11] |
F. Jiao, Q. Sun, M. Tang, J. Yu and B. Zheng,
Distribution modes and their corresponding parameter regions in stochastic gene transcription, SIAM J. Appl. Math., 75 (2015), 2396-2420.
doi: 10.1137/151005567. |
[12] |
F. Jiao, M. Tang and J. Yu,
Distribution profiles and their dynamic transition in stochastic gene transcription, J. Differential Equations, 254 (2013), 3307-3328.
doi: 10.1016/j.jde.2013.01.019. |
[13] |
M. Kaern, T. C. Elston, W. J. Blake and J. J. Collins,
Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Genet., 6 (2005), 451-464.
doi: 10.1038/nrg1615. |
[14] |
J. Kuang, M. Tang and J. Yu,
The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 67 (2013), 261-291.
doi: 10.1007/s00285-012-0551-8. |
[15] |
D. R. Larson,
What do expression dynamics tell us about the mechanism of transcription, Curr. Opin. Genet. Dev., 21 (2011), 591-599.
doi: 10.1016/j.gde.2011.07.010. |
[16] |
Q. Li, L. Huang and J. Yu,
Modulation of first-passage time for bursty gene expression via random signals, Math. Biosci. Eng., 14 (2017), 1261-1277.
doi: 10.3934/mbe.2017065. |
[17] |
Y. Li, M. Tang and J. Yu,
Transcription dynamics of inducible genes modulated by negative regulations, Math. Med. Biol., 32 (2015), 115-136.
doi: 10.1093/imammb/dqt019. |
[18] |
G. Lin, J. Yu, Z. Zhou, Q. Sun and F. Jiao,
Fluctuations of mRNA distributions in multiple pathway activated transcription, Discrete Contin. Dyn. Syst. B, 24 (2019), 1543-1568.
doi: 10.3934/dcdsb.2018219. |
[19] |
N. Molina et al., Stimulus-induced modulation of transcriptional bursting in a single mammalian gene, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 20563-20568. Google Scholar |
[20] |
A. Mugler, A. M. Walczak and C. H. Wiggins, Spectral solutions to stochastic models of gene expression with bursts and regulation, Phys. Rev. E, 80 (2009), 041921.
doi: 10.1103/PhysRevE.80.041921. |
[21] |
B. Munsky, G. Neuert and A. van Oudenaarden,
Using gene expression noise to understand gene regulation, Science, 336 (2012), 183-187.
doi: 10.1126/science.1216379. |
[22] |
G. Neuert et al., Systematic identification of signal-activated stochastic gene regulation, Science, 339 (2013), 584-587. Google Scholar |
[23] |
J. Peccoud and B. Ycart, Markovian modelling of gene-product synthesis, Theor. Popul. Biol., 48 (1995), 222-234. Google Scholar |
[24] |
S. Pelet et al., Transient activation of the HOG MAPK pathway regulates bimodal Gene expression, Science, 332 (2011), 732-735. Google Scholar |
[25] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309.
doi: 10.1371/journal.pbio.0040309. |
[26] |
J. Ren, F. Jiao, Q. Sun, M. Tang and J. Yu,
The dynamics of gene transcription in random environments, Discrete Contin. Dyn. Syst. B, 23 (2018), 3167-3194.
doi: 10.3934/dcdsb.2018224. |
[27] |
A. Sanchez and I. Golding,
Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193.
doi: 10.1126/science.1242975. |
[28] |
V. Shahrezaei and P. S. Swain,
Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.
doi: 10.1073/pnas.0803850105. |
[29] |
S. O. Skinner et al., Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization, Nat. Protoc., 8 (2013), 1100-1113. Google Scholar |
[30] |
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, England, 1960.
![]() |
[31] |
A. R. Stinchcombe, C. S. Peskin and D. Tranchina, Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression, Phys. Rev. E, 85 (2012), 061919.
doi: 10.1103/PhysRevE.85.061919. |
[32] |
L. So et al., General properties of the transcriptional timeseries in Escherichia Coli, Nat. Genet., 43 (2011), 554-560. Google Scholar |
[33] |
M. Tabaka and R. Hołyst, Binary and graded evolution in time in a simple model of gene induction, Phys. Rev. E, 82 (2010), 052902.
doi: 10.1103/PhysRevE.82.052902. |
[34] |
J. Yu, Q. Sun and M. Tang,
The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, J. Theor. Biol., 363 (2014), 223-234.
doi: 10.1016/j.jtbi.2014.08.024. |
[35] |
J. Yu and X. Liu,
Monotonic dynamics of mRNA degradation by two pathways, J. Appl. Anal. Comput., 7 (2017), 1598-1612.
|
[36] |
Q. Wang, L. Huang, K. Wen and J. Yu,
The mean and noise of stochastic gene transcription with cell division, Math. Biosci. Eng., 15 (2018), 1255-1270.
doi: 10.3934/mbe.2018058. |
[37] |
D. Zenklusen, D. R. Larson and R. H. Singer, Single-RNA counting reveals alternative modes of gene expression in yeast, Nat. Struct. Mol. Biol., 15 (2008), 1263-1271. Google Scholar |
show all references
References:
[1] |
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781107325937.![]() ![]() |
[2] |
T. M. Apostol, Mathematical Analysis, 2$^{nd}$ edition, Addison-Wesley, Boston, USA, 1974. |
[3] |
R. D. Dar et al., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 17454-17459. Google Scholar |
[4] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Math. Society, Providence, USA, 2010.
doi: 10.1090/gsm/019. |
[5] |
S. Fiering et al., Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor, Genes Dev., 4 (1990), 1823-1834. Google Scholar |
[6] |
D.T. Gillespie,
Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58 (2007), 35-55.
doi: 10.1146/annurev.physchem.58.032806.104637. |
[7] |
I. Golding, J. Paulsson, S. M. Zawilski and E. C. Cox,
Real-time kinetics of gene activity in individual bacteria, Cell, 123 (2005), 1025-1036.
doi: 10.1016/j.cell.2005.09.031. |
[8] |
M. W. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, Amsterdam, 2004.
![]() |
[9] |
S. Iyer-Biswas, F. Hayot and C. Jayaprakash, Stochasticity of gene products from transcriptional pulsing, Phys. Rev. E, 79 (2009), 031911.
doi: 10.1103/PhysRevE.79.031911. |
[10] |
F. Jiao, Q. Sun, G. Lin and J. Yu,
Distribution profiles in gene transcription activated by the cross-talking pathway, Discrete Contin. Dyn. Syst. B, 24 (2019), 2799-2810.
doi: 10.3934/dcdsb.2018275. |
[11] |
F. Jiao, Q. Sun, M. Tang, J. Yu and B. Zheng,
Distribution modes and their corresponding parameter regions in stochastic gene transcription, SIAM J. Appl. Math., 75 (2015), 2396-2420.
doi: 10.1137/151005567. |
[12] |
F. Jiao, M. Tang and J. Yu,
Distribution profiles and their dynamic transition in stochastic gene transcription, J. Differential Equations, 254 (2013), 3307-3328.
doi: 10.1016/j.jde.2013.01.019. |
[13] |
M. Kaern, T. C. Elston, W. J. Blake and J. J. Collins,
Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Genet., 6 (2005), 451-464.
doi: 10.1038/nrg1615. |
[14] |
J. Kuang, M. Tang and J. Yu,
The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 67 (2013), 261-291.
doi: 10.1007/s00285-012-0551-8. |
[15] |
D. R. Larson,
What do expression dynamics tell us about the mechanism of transcription, Curr. Opin. Genet. Dev., 21 (2011), 591-599.
doi: 10.1016/j.gde.2011.07.010. |
[16] |
Q. Li, L. Huang and J. Yu,
Modulation of first-passage time for bursty gene expression via random signals, Math. Biosci. Eng., 14 (2017), 1261-1277.
doi: 10.3934/mbe.2017065. |
[17] |
Y. Li, M. Tang and J. Yu,
Transcription dynamics of inducible genes modulated by negative regulations, Math. Med. Biol., 32 (2015), 115-136.
doi: 10.1093/imammb/dqt019. |
[18] |
G. Lin, J. Yu, Z. Zhou, Q. Sun and F. Jiao,
Fluctuations of mRNA distributions in multiple pathway activated transcription, Discrete Contin. Dyn. Syst. B, 24 (2019), 1543-1568.
doi: 10.3934/dcdsb.2018219. |
[19] |
N. Molina et al., Stimulus-induced modulation of transcriptional bursting in a single mammalian gene, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 20563-20568. Google Scholar |
[20] |
A. Mugler, A. M. Walczak and C. H. Wiggins, Spectral solutions to stochastic models of gene expression with bursts and regulation, Phys. Rev. E, 80 (2009), 041921.
doi: 10.1103/PhysRevE.80.041921. |
[21] |
B. Munsky, G. Neuert and A. van Oudenaarden,
Using gene expression noise to understand gene regulation, Science, 336 (2012), 183-187.
doi: 10.1126/science.1216379. |
[22] |
G. Neuert et al., Systematic identification of signal-activated stochastic gene regulation, Science, 339 (2013), 584-587. Google Scholar |
[23] |
J. Peccoud and B. Ycart, Markovian modelling of gene-product synthesis, Theor. Popul. Biol., 48 (1995), 222-234. Google Scholar |
[24] |
S. Pelet et al., Transient activation of the HOG MAPK pathway regulates bimodal Gene expression, Science, 332 (2011), 732-735. Google Scholar |
[25] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309.
doi: 10.1371/journal.pbio.0040309. |
[26] |
J. Ren, F. Jiao, Q. Sun, M. Tang and J. Yu,
The dynamics of gene transcription in random environments, Discrete Contin. Dyn. Syst. B, 23 (2018), 3167-3194.
doi: 10.3934/dcdsb.2018224. |
[27] |
A. Sanchez and I. Golding,
Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193.
doi: 10.1126/science.1242975. |
[28] |
V. Shahrezaei and P. S. Swain,
Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.
doi: 10.1073/pnas.0803850105. |
[29] |
S. O. Skinner et al., Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization, Nat. Protoc., 8 (2013), 1100-1113. Google Scholar |
[30] |
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, England, 1960.
![]() |
[31] |
A. R. Stinchcombe, C. S. Peskin and D. Tranchina, Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression, Phys. Rev. E, 85 (2012), 061919.
doi: 10.1103/PhysRevE.85.061919. |
[32] |
L. So et al., General properties of the transcriptional timeseries in Escherichia Coli, Nat. Genet., 43 (2011), 554-560. Google Scholar |
[33] |
M. Tabaka and R. Hołyst, Binary and graded evolution in time in a simple model of gene induction, Phys. Rev. E, 82 (2010), 052902.
doi: 10.1103/PhysRevE.82.052902. |
[34] |
J. Yu, Q. Sun and M. Tang,
The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, J. Theor. Biol., 363 (2014), 223-234.
doi: 10.1016/j.jtbi.2014.08.024. |
[35] |
J. Yu and X. Liu,
Monotonic dynamics of mRNA degradation by two pathways, J. Appl. Anal. Comput., 7 (2017), 1598-1612.
|
[36] |
Q. Wang, L. Huang, K. Wen and J. Yu,
The mean and noise of stochastic gene transcription with cell division, Math. Biosci. Eng., 15 (2018), 1255-1270.
doi: 10.3934/mbe.2018058. |
[37] |
D. Zenklusen, D. R. Larson and R. H. Singer, Single-RNA counting reveals alternative modes of gene expression in yeast, Nat. Struct. Mol. Biol., 15 (2008), 1263-1271. Google Scholar |



[1] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[2] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[3] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[4] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[5] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[6] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[7] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[8] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[9] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[10] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
[11] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[12] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[13] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[14] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[15] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[16] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[17] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[18] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[19] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[20] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]