January  2020, 25(1): 259-286. doi: 10.3934/dcdsb.2019181

Analysis of time-domain Maxwell's equations in biperiodic structures

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN47907, USA

3. 

School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

* Corresponding author: Gang Bao

Received  January 2019 Revised  March 2019 Published  July 2019

This paper is devoted to the mathematical analysis of the diffraction of an electromagnetic plane wave by a biperiodic structure. The wave propagation is governed by the time-domain Maxwell equations in three dimensions. The method of a compressed coordinate transformation is proposed to reduce equivalently the diffraction problem into an initial-boundary value problem formulated in a bounded domain over a finite time interval. The reduced problem is shown to have a unique weak solution by using the constructive Galerkin method. The stability and a priori estimates with explicit time dependence are established for the weak solution.

Citation: Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181
References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.  doi: 10.1006/jcph.2002.7093.  Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.  doi: 10.1088/0266-5611/11/4/013.  Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.  doi: 10.1002/mana.200310026.  Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.  doi: 10.1137/0732053.  Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.  doi: 10.1007/s002110050227.  Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.  doi: 10.1137/S0036139995279408.  Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.  doi: 10.1364/JOSAA.12.001029.  Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.  doi: 10.1364/JOSAA.22.001106.  Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594.  Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.  doi: 10.1137/s0036142998342380.  Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.  doi: 10.1364/OE.22.004799.  Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.  doi: 10.1090/S0002-9939-00-05509-X.  Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.  doi: 10.1007/BF00390349.  Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.  doi: 10.2307/2001542.  Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.   Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.  doi: 10.1051/m2an/1994280404191.  Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.  doi: 10.1016/0022-247X(92)90312-2.  Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.  doi: 10.1016/j.jcp.2015.07.067.  Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.  doi: 10.1137/S0036139993269266.  Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.  doi: 10.1017/s0962492900002890.  Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9.  Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.  doi: 10.1051/m2an/2012063.  Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.  doi: 10.1137/140989637.  Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.  doi: 10.1137/0522104.  Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3.  Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.   Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.  doi: 10.1163/156939393X00020.  Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.  doi: 10.4208/jms.v47n1.14.04.  Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.  doi: 10.1137/110849146.  Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.  doi: 10.1364/JOSAA.26.002444.  Google Scholar

show all references

References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.  doi: 10.1006/jcph.2002.7093.  Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.  doi: 10.1088/0266-5611/11/4/013.  Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.  doi: 10.1002/mana.200310026.  Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.  doi: 10.1137/0732053.  Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.  doi: 10.1007/s002110050227.  Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.  doi: 10.1137/S0036139995279408.  Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.  doi: 10.1364/JOSAA.12.001029.  Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.  doi: 10.1364/JOSAA.22.001106.  Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594.  Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.  doi: 10.1137/s0036142998342380.  Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.  doi: 10.1364/OE.22.004799.  Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.  doi: 10.1090/S0002-9939-00-05509-X.  Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.  doi: 10.1007/BF00390349.  Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.  doi: 10.2307/2001542.  Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.   Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.  doi: 10.1051/m2an/1994280404191.  Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.  doi: 10.1016/0022-247X(92)90312-2.  Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.  doi: 10.1016/j.jcp.2015.07.067.  Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.  doi: 10.1137/S0036139993269266.  Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.  doi: 10.1017/s0962492900002890.  Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9.  Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.  doi: 10.1051/m2an/2012063.  Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.  doi: 10.1137/140989637.  Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.  doi: 10.1137/0522104.  Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3.  Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.   Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.  doi: 10.1163/156939393X00020.  Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.  doi: 10.4208/jms.v47n1.14.04.  Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.  doi: 10.1137/110849146.  Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.  doi: 10.1364/JOSAA.26.002444.  Google Scholar

Figure 1.  Problem geometry of the time-domain scattering by a biperiodic structure
[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[2]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[3]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[4]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[5]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[6]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[7]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[8]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[9]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[14]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[15]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[16]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[17]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[18]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[19]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[20]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (116)
  • HTML views (431)
  • Cited by (0)

Other articles
by authors

[Back to Top]