
-
Previous Article
Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay
- DCDS-B Home
- This Issue
-
Next Article
Analytical formula and dynamic profile of mRNA distribution
Analysis of time-domain Maxwell's equations in biperiodic structures
1. | School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China |
2. | Department of Mathematics, Purdue University, West Lafayette, IN47907, USA |
3. | School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China |
This paper is devoted to the mathematical analysis of the diffraction of an electromagnetic plane wave by a biperiodic structure. The wave propagation is governed by the time-domain Maxwell equations in three dimensions. The method of a compressed coordinate transformation is proposed to reduce equivalently the diffraction problem into an initial-boundary value problem formulated in a bounded domain over a finite time interval. The reduced problem is shown to have a unique weak solution by using the constructive Galerkin method. The stability and a priori estimates with explicit time dependence are established for the weak solution.
References:
[1] |
B. Alpert, L. Greengard and T. Hagstrom,
Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.
doi: 10.1006/jcph.2002.7093. |
[2] |
H. Ammari,
Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.
doi: 10.1088/0266-5611/11/4/013. |
[3] |
H. Ammari and G. Bao,
Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.
doi: 10.1002/mana.200310026. |
[4] |
G. Bao,
Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.
doi: 10.1137/0732053. |
[5] |
G. Bao,
Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.
doi: 10.1007/s002110050227. |
[6] |
G. Bao,
Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.
doi: 10.1137/S0036139995279408. |
[7] |
G. Bao, D. Dobson and J. A. Cox,
Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.
doi: 10.1364/JOSAA.12.001029. |
[8] |
G. Bao, Z. Chen and and H. Wu,
Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.
doi: 10.1364/JOSAA.22.001106. |
[9] |
G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898717594. |
[10] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[11] |
G. Bao and H. Yang,
A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.
doi: 10.1137/s0036142998342380. |
[12] |
G. Bao, T. Cui and and P. Li,
Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.
doi: 10.1364/OE.22.004799. |
[13] |
G. Bao and D. Dobson,
On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.
doi: 10.1090/S0002-9939-00-05509-X. |
[14] |
G. Bao and A. Friedman,
Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.
doi: 10.1007/BF00390349. |
[15] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[16] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.
doi: 10.1137/110833555. |
[17] |
X. Chen and A. Friedman,
Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.
doi: 10.2307/2001542. |
[18] |
Z. Chen and J.-C. Nédélec,
On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.
|
[19] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[20] |
D. Dobson,
A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.
doi: 10.1051/m2an/1994280404191. |
[21] |
D. Dobson and A. Friedman,
The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.
doi: 10.1016/0022-247X(92)90312-2. |
[22] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[23] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[24] |
L. Fan and P. Monk,
Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.
doi: 10.1016/j.jcp.2015.07.067. |
[25] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[26] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[27] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[28] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[29] |
M. J. Grote and J. B. Keller,
Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.
doi: 10.1137/S0036139993269266. |
[30] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.
doi: 10.1017/s0962492900002890. |
[31] |
X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp.
doi: 10.1088/1361-6420/aa76b9. |
[32] |
A. Lechleiter and D. L. Nguyen.,
On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.
doi: 10.1051/m2an/2012063. |
[33] |
P. Li, L.-L. Wang and A. Wood,
Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.
doi: 10.1137/140989637. |
[34] |
J.-C. Nedelec and F. Starling,
Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.
doi: 10.1137/0522104. |
[35] |
R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980.
doi: 10.1007/978-3-642-81500-3. |
[36] |
P. Rayleigh,
On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.
|
[37] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[38] |
M. Veysoglu, R. Shin and J. A. Kong,
A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.
doi: 10.1163/156939393X00020. |
[39] |
B. Wang and L.-L. Wang,
On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.
doi: 10.4208/jms.v47n1.14.04. |
[40] |
L.-L. Wang, B. Wang and X. Zhao,
Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.
doi: 10.1137/110849146. |
[41] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[42] |
Y. Wu and Y. Y. Lu,
Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.
doi: 10.1364/JOSAA.26.002444. |
show all references
References:
[1] |
B. Alpert, L. Greengard and T. Hagstrom,
Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.
doi: 10.1006/jcph.2002.7093. |
[2] |
H. Ammari,
Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.
doi: 10.1088/0266-5611/11/4/013. |
[3] |
H. Ammari and G. Bao,
Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.
doi: 10.1002/mana.200310026. |
[4] |
G. Bao,
Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.
doi: 10.1137/0732053. |
[5] |
G. Bao,
Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.
doi: 10.1007/s002110050227. |
[6] |
G. Bao,
Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.
doi: 10.1137/S0036139995279408. |
[7] |
G. Bao, D. Dobson and J. A. Cox,
Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.
doi: 10.1364/JOSAA.12.001029. |
[8] |
G. Bao, Z. Chen and and H. Wu,
Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.
doi: 10.1364/JOSAA.22.001106. |
[9] |
G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898717594. |
[10] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[11] |
G. Bao and H. Yang,
A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.
doi: 10.1137/s0036142998342380. |
[12] |
G. Bao, T. Cui and and P. Li,
Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.
doi: 10.1364/OE.22.004799. |
[13] |
G. Bao and D. Dobson,
On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.
doi: 10.1090/S0002-9939-00-05509-X. |
[14] |
G. Bao and A. Friedman,
Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.
doi: 10.1007/BF00390349. |
[15] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[16] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.
doi: 10.1137/110833555. |
[17] |
X. Chen and A. Friedman,
Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.
doi: 10.2307/2001542. |
[18] |
Z. Chen and J.-C. Nédélec,
On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.
|
[19] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[20] |
D. Dobson,
A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.
doi: 10.1051/m2an/1994280404191. |
[21] |
D. Dobson and A. Friedman,
The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.
doi: 10.1016/0022-247X(92)90312-2. |
[22] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[23] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[24] |
L. Fan and P. Monk,
Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.
doi: 10.1016/j.jcp.2015.07.067. |
[25] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[26] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[27] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[28] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[29] |
M. J. Grote and J. B. Keller,
Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.
doi: 10.1137/S0036139993269266. |
[30] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.
doi: 10.1017/s0962492900002890. |
[31] |
X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp.
doi: 10.1088/1361-6420/aa76b9. |
[32] |
A. Lechleiter and D. L. Nguyen.,
On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.
doi: 10.1051/m2an/2012063. |
[33] |
P. Li, L.-L. Wang and A. Wood,
Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.
doi: 10.1137/140989637. |
[34] |
J.-C. Nedelec and F. Starling,
Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.
doi: 10.1137/0522104. |
[35] |
R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980.
doi: 10.1007/978-3-642-81500-3. |
[36] |
P. Rayleigh,
On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.
|
[37] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[38] |
M. Veysoglu, R. Shin and J. A. Kong,
A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.
doi: 10.1163/156939393X00020. |
[39] |
B. Wang and L.-L. Wang,
On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.
doi: 10.4208/jms.v47n1.14.04. |
[40] |
L.-L. Wang, B. Wang and X. Zhao,
Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.
doi: 10.1137/110849146. |
[41] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[42] |
Y. Wu and Y. Y. Lu,
Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.
doi: 10.1364/JOSAA.26.002444. |

[1] |
Kun Li, Ting-Zhu Huang, Liang Li, Ying Zhao, Stéphane Lanteri. A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022084 |
[2] |
Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367 |
[3] |
Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457 |
[4] |
Alessandro Paolucci, Cristina Pignotti. Well-posedness and stability for semilinear wave-type equations with time delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1561-1571. doi: 10.3934/dcdss.2022049 |
[5] |
Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451 |
[6] |
Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315 |
[7] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[8] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[9] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[10] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[11] |
Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15 |
[12] |
Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15 |
[13] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[14] |
Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4111-4130. doi: 10.3934/dcdsb.2020276 |
[15] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[16] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[17] |
Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389 |
[18] |
Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056 |
[19] |
Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005 |
[20] |
Hartmut Pecher. Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2965-2989. doi: 10.3934/cpaa.2021091 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]