January  2020, 25(1): 259-286. doi: 10.3934/dcdsb.2019181

Analysis of time-domain Maxwell's equations in biperiodic structures

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN47907, USA

3. 

School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

* Corresponding author: Gang Bao

Received  January 2019 Revised  March 2019 Published  July 2019

This paper is devoted to the mathematical analysis of the diffraction of an electromagnetic plane wave by a biperiodic structure. The wave propagation is governed by the time-domain Maxwell equations in three dimensions. The method of a compressed coordinate transformation is proposed to reduce equivalently the diffraction problem into an initial-boundary value problem formulated in a bounded domain over a finite time interval. The reduced problem is shown to have a unique weak solution by using the constructive Galerkin method. The stability and a priori estimates with explicit time dependence are established for the weak solution.

Citation: Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181
References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.  doi: 10.1006/jcph.2002.7093.  Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.  doi: 10.1088/0266-5611/11/4/013.  Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.  doi: 10.1002/mana.200310026.  Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.  doi: 10.1137/0732053.  Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.  doi: 10.1007/s002110050227.  Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.  doi: 10.1137/S0036139995279408.  Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.  doi: 10.1364/JOSAA.12.001029.  Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.  doi: 10.1364/JOSAA.22.001106.  Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594.  Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.  doi: 10.1137/s0036142998342380.  Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.  doi: 10.1364/OE.22.004799.  Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.  doi: 10.1090/S0002-9939-00-05509-X.  Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.  doi: 10.1007/BF00390349.  Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.  doi: 10.2307/2001542.  Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.   Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.  doi: 10.1051/m2an/1994280404191.  Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.  doi: 10.1016/0022-247X(92)90312-2.  Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.  doi: 10.1016/j.jcp.2015.07.067.  Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.  doi: 10.1137/S0036139993269266.  Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.  doi: 10.1017/s0962492900002890.  Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9.  Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.  doi: 10.1051/m2an/2012063.  Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.  doi: 10.1137/140989637.  Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.  doi: 10.1137/0522104.  Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3.  Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.   Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.  doi: 10.1163/156939393X00020.  Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.  doi: 10.4208/jms.v47n1.14.04.  Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.  doi: 10.1137/110849146.  Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.  doi: 10.1364/JOSAA.26.002444.  Google Scholar

show all references

References:
[1]

B. AlpertL. Greengard and T. Hagstrom, Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.  doi: 10.1006/jcph.2002.7093.  Google Scholar

[2]

H. Ammari, Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.  doi: 10.1088/0266-5611/11/4/013.  Google Scholar

[3]

H. Ammari and G. Bao, Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.  doi: 10.1002/mana.200310026.  Google Scholar

[4]

G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.  doi: 10.1137/0732053.  Google Scholar

[5]

G. Bao, Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.  doi: 10.1007/s002110050227.  Google Scholar

[6]

G. Bao, Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.  doi: 10.1137/S0036139995279408.  Google Scholar

[7]

G. BaoD. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.  doi: 10.1364/JOSAA.12.001029.  Google Scholar

[8]

G. BaoZ. Chen and and H. Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.  doi: 10.1364/JOSAA.22.001106.  Google Scholar

[9]

G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898717594.  Google Scholar

[10]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[11]

G. Bao and H. Yang, A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.  doi: 10.1137/s0036142998342380.  Google Scholar

[12]

G. BaoT. Cui and and P. Li, Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.  doi: 10.1364/OE.22.004799.  Google Scholar

[13]

G. Bao and D. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.  doi: 10.1090/S0002-9939-00-05509-X.  Google Scholar

[14]

G. Bao and A. Friedman, Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.  doi: 10.1007/BF00390349.  Google Scholar

[15]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[16]

Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.  doi: 10.1137/110833555.  Google Scholar

[17]

X. Chen and A. Friedman, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.  doi: 10.2307/2001542.  Google Scholar

[18]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.   Google Scholar

[19]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[20]

D. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.  doi: 10.1051/m2an/1994280404191.  Google Scholar

[21]

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.  doi: 10.1016/0022-247X(92)90312-2.  Google Scholar

[22]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[23]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[24]

L. Fan and P. Monk, Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.  doi: 10.1016/j.jcp.2015.07.067.  Google Scholar

[25]

Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.  doi: 10.1016/j.jde.2016.07.020.  Google Scholar

[26]

Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.  doi: 10.1142/S0218202517500336.  Google Scholar

[27]

Y. GaoP. Li and Y. Li, Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.  doi: 10.1002/mma.5214.  Google Scholar

[28]

Y. GaoP. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.  doi: 10.1137/16M1090326.  Google Scholar

[29]

M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.  doi: 10.1137/S0036139993269266.  Google Scholar

[30]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.  doi: 10.1017/s0962492900002890.  Google Scholar

[31]

X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp. doi: 10.1088/1361-6420/aa76b9.  Google Scholar

[32]

A. Lechleiter and D. L. Nguyen., On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.  doi: 10.1051/m2an/2012063.  Google Scholar

[33]

P. LiL.-L. Wang and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.  doi: 10.1137/140989637.  Google Scholar

[34]

J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.  doi: 10.1137/0522104.  Google Scholar

[35]

R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980. doi: 10.1007/978-3-642-81500-3.  Google Scholar

[36]

P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416.   Google Scholar

[37]

D. J. Riley and J.-M. Jin, Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.  doi: 10.1109/TAP.2008.2005454.  Google Scholar

[38]

M. VeysogluR. Shin and J. A. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.  doi: 10.1163/156939393X00020.  Google Scholar

[39]

B. Wang and L.-L. Wang, On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.  doi: 10.4208/jms.v47n1.14.04.  Google Scholar

[40]

L.-L. WangB. Wang and X. Zhao, Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.  doi: 10.1137/110849146.  Google Scholar

[41]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[42]

Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.  doi: 10.1364/JOSAA.26.002444.  Google Scholar

Figure 1.  Problem geometry of the time-domain scattering by a biperiodic structure
[1]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[10]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[13]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[18]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[19]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[20]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (104)
  • HTML views (395)
  • Cited by (0)

Other articles
by authors

[Back to Top]