
-
Previous Article
Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay
- DCDS-B Home
- This Issue
-
Next Article
Analytical formula and dynamic profile of mRNA distribution
Analysis of time-domain Maxwell's equations in biperiodic structures
1. | School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China |
2. | Department of Mathematics, Purdue University, West Lafayette, IN47907, USA |
3. | School of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China |
This paper is devoted to the mathematical analysis of the diffraction of an electromagnetic plane wave by a biperiodic structure. The wave propagation is governed by the time-domain Maxwell equations in three dimensions. The method of a compressed coordinate transformation is proposed to reduce equivalently the diffraction problem into an initial-boundary value problem formulated in a bounded domain over a finite time interval. The reduced problem is shown to have a unique weak solution by using the constructive Galerkin method. The stability and a priori estimates with explicit time dependence are established for the weak solution.
References:
[1] |
B. Alpert, L. Greengard and T. Hagstrom,
Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.
doi: 10.1006/jcph.2002.7093. |
[2] |
H. Ammari,
Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.
doi: 10.1088/0266-5611/11/4/013. |
[3] |
H. Ammari and G. Bao,
Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.
doi: 10.1002/mana.200310026. |
[4] |
G. Bao,
Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.
doi: 10.1137/0732053. |
[5] |
G. Bao,
Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.
doi: 10.1007/s002110050227. |
[6] |
G. Bao,
Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.
doi: 10.1137/S0036139995279408. |
[7] |
G. Bao, D. Dobson and J. A. Cox,
Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.
doi: 10.1364/JOSAA.12.001029. |
[8] |
G. Bao, Z. Chen and and H. Wu,
Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.
doi: 10.1364/JOSAA.22.001106. |
[9] |
G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898717594. |
[10] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[11] |
G. Bao and H. Yang,
A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.
doi: 10.1137/s0036142998342380. |
[12] |
G. Bao, T. Cui and and P. Li,
Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.
doi: 10.1364/OE.22.004799. |
[13] |
G. Bao and D. Dobson,
On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.
doi: 10.1090/S0002-9939-00-05509-X. |
[14] |
G. Bao and A. Friedman,
Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.
doi: 10.1007/BF00390349. |
[15] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[16] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.
doi: 10.1137/110833555. |
[17] |
X. Chen and A. Friedman,
Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.
doi: 10.2307/2001542. |
[18] |
Z. Chen and J.-C. Nédélec,
On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.
|
[19] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[20] |
D. Dobson,
A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.
doi: 10.1051/m2an/1994280404191. |
[21] |
D. Dobson and A. Friedman,
The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.
doi: 10.1016/0022-247X(92)90312-2. |
[22] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[23] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[24] |
L. Fan and P. Monk,
Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.
doi: 10.1016/j.jcp.2015.07.067. |
[25] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[26] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[27] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[28] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[29] |
M. J. Grote and J. B. Keller,
Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.
doi: 10.1137/S0036139993269266. |
[30] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.
doi: 10.1017/s0962492900002890. |
[31] |
X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp.
doi: 10.1088/1361-6420/aa76b9. |
[32] |
A. Lechleiter and D. L. Nguyen.,
On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.
doi: 10.1051/m2an/2012063. |
[33] |
P. Li, L.-L. Wang and A. Wood,
Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.
doi: 10.1137/140989637. |
[34] |
J.-C. Nedelec and F. Starling,
Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.
doi: 10.1137/0522104. |
[35] |
R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980.
doi: 10.1007/978-3-642-81500-3. |
[36] |
P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416. Google Scholar |
[37] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[38] |
M. Veysoglu, R. Shin and J. A. Kong,
A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.
doi: 10.1163/156939393X00020. |
[39] |
B. Wang and L.-L. Wang,
On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.
doi: 10.4208/jms.v47n1.14.04. |
[40] |
L.-L. Wang, B. Wang and X. Zhao,
Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.
doi: 10.1137/110849146. |
[41] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[42] |
Y. Wu and Y. Y. Lu,
Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.
doi: 10.1364/JOSAA.26.002444. |
show all references
References:
[1] |
B. Alpert, L. Greengard and T. Hagstrom,
Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180 (2002), 270-296.
doi: 10.1006/jcph.2002.7093. |
[2] |
H. Ammari,
Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Problems, 11 (1995), 823-833.
doi: 10.1088/0266-5611/11/4/013. |
[3] |
H. Ammari and G. Bao,
Maxwell's equations in periodic chiral structures, Math.Nachr., 251 (2003), 3-18.
doi: 10.1002/mana.200310026. |
[4] |
G. Bao,
Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155-1169.
doi: 10.1137/0732053. |
[5] |
G. Bao,
Numerical analysis of diffraction by periodic structures: TM polarization, Numer. Math., 75 (1996), 1-16.
doi: 10.1007/s002110050227. |
[6] |
G. Bao,
Variational approximation of Maxwell's equations in biperiodic structures, SIAM J. Appl. Math., 57 (1997), 364-381.
doi: 10.1137/S0036139995279408. |
[7] |
G. Bao, D. Dobson and J. A. Cox,
Mathematical studies in rigorous grating theory, J. Opt. Soc. Am. A, 12 (1995), 1029-1042.
doi: 10.1364/JOSAA.12.001029. |
[8] |
G. Bao, Z. Chen and and H. Wu,
Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A, 22 (2005), 1106-1114.
doi: 10.1364/JOSAA.22.001106. |
[9] |
G. Bao, L. Cowsar and W. Masters, Eds., Mathematical Modeling in Optical Science, Frontiers in Applied Mathematics, vol. 22, SIAM, Philadelphia, PA, 2001.
doi: 10.1137/1.9780898717594. |
[10] |
G. Bao, P. Li and H. Wu,
An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1. |
[11] |
G. Bao and H. Yang,
A least-squares finite element analysis for diffraction problems, SIAM J. Numer. Anal., 37 (2000), 665-682.
doi: 10.1137/s0036142998342380. |
[12] |
G. Bao, T. Cui and and P. Li,
Inverse diffraction grating of Maxwell's equations in biperiodic structures, Opt. Express, 22 (2014), 4799-4816.
doi: 10.1364/OE.22.004799. |
[13] |
G. Bao and D. Dobson,
On the scattering by a biperiodic structure, Proc. Amer. Math. Soc., 128 (2000), 2715-2723.
doi: 10.1090/S0002-9939-00-05509-X. |
[14] |
G. Bao and A. Friedman,
Inverse problems for scattering by periodic structure, Arch. Rational Mech. Anal., 132 (1995), 49-72.
doi: 10.1007/BF00390349. |
[15] |
G. Bao, Y. Gao and P. Li,
Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 292 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[16] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal., 46 (2014), 3107-3130.
doi: 10.1137/110833555. |
[17] |
X. Chen and A. Friedman,
Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc., 323 (1991), 465-507.
doi: 10.2307/2001542. |
[18] |
Z. Chen and J.-C. Nédélec,
On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26 (2008), 284-296.
|
[19] |
Z. Chen and H. Wu,
An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901. |
[20] |
D. Dobson,
A variational method for electromagnetic diffraction in biperiodic structures, Math. Modelling Numer. Anal., 28 (1994), 419-439.
doi: 10.1051/m2an/1994280404191. |
[21] |
D. Dobson and A. Friedman,
The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166 (1992), 507-528.
doi: 10.1016/0022-247X(92)90312-2. |
[22] |
B. Engquist and A. Majda,
Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[23] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[24] |
L. Fan and P. Monk,
Time dependent scattering from a grating, J. Comput. Phys., 302 (2015), 97-113.
doi: 10.1016/j.jcp.2015.07.067. |
[25] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differential Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[26] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[27] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math. Meth. Appl. Sci., 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[28] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J. Math. Anal., 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[29] |
M. J. Grote and J. B. Keller,
Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55 (1995), 280-297.
doi: 10.1137/S0036139993269266. |
[30] |
T. Hagstrom,
Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), 47-106.
doi: 10.1017/s0962492900002890. |
[31] |
X. Jiang and P. Li, Inverse electromagnetic diffraction by biperiodic dielectric gratings, Inverse Probl., 33 (2017), 085004, 29pp.
doi: 10.1088/1361-6420/aa76b9. |
[32] |
A. Lechleiter and D. L. Nguyen.,
On uniqueness in electromagnetic scattering from biperiodic structures, ESAIM: M2AN, 47 (2013), 1167-1184.
doi: 10.1051/m2an/2012063. |
[33] |
P. Li, L.-L. Wang and A. Wood,
Analysis of transient electromagentic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675-1699.
doi: 10.1137/140989637. |
[34] |
J.-C. Nedelec and F. Starling,
Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal., 22 (1991), 1679-1701.
doi: 10.1137/0522104. |
[35] |
R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980.
doi: 10.1007/978-3-642-81500-3. |
[36] |
P. Rayleigh, On the dynamical theory of gratings, R. Soc. London Ser. A, 79 (1907), 399-416. Google Scholar |
[37] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE Trans. Antennas and Propagation, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[38] |
M. Veysoglu, R. Shin and J. A. Kong,
A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case, J. Electromagn. Waves Appl., 7 (1993), 1595-1607.
doi: 10.1163/156939393X00020. |
[39] |
B. Wang and L.-L. Wang,
On L$^2$-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, J. Math. Study, 47 (2014), 65-84.
doi: 10.4208/jms.v47n1.14.04. |
[40] |
L.-L. Wang, B. Wang and X. Zhao,
Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions, SIAM J. Appl. Math., 72 (2012), 1869-1898.
doi: 10.1137/110849146. |
[41] |
Z. Wang, G. Bao, J. Li, P. Li and H. Wu,
An adaptive finite element method for the diffraction grating problem with transparent boundary conditions, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907. |
[42] |
Y. Wu and Y. Y. Lu,
Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), 2444-2451.
doi: 10.1364/JOSAA.26.002444. |

[1] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[2] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[3] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[4] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[5] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[6] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[7] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[8] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[9] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[10] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[11] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[12] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[13] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[14] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[15] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[16] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[17] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[18] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[19] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[20] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]