
-
Previous Article
Multi-scale analysis for highly anisotropic parabolic problems
- DCDS-B Home
- This Issue
-
Next Article
Pullback exponential attractors for differential equations with variable delays
Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution
1. | School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China |
2. | School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250014, China |
3. | Labroatory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
In this work, the time fractional KdV equation with Caputo time derivative of order $ \alpha \in (0,1) $ is considered. The solution of this problem has a weak singularity near the initial time $ t = 0 $. A fully discrete discontinuous Galerkin (DG) method combining the well-known L1 discretisation in time and DG method in space is proposed to approximate the time fractional KdV equation. The unconditional stability result and O$ (N^{-\min \{r\alpha,2-\alpha\}}+h^{k+1}) $ convergence result for $ P^k \; (k\geq 2) $ polynomials are obtained. Finally, numerical experiments are presented to illustrate the efficiency and the high order accuracy of the proposed scheme.
References:
[1] |
N. An, C. Huang and X. Yu,
Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation, Appl. Math. Comput., 349 (2019), 148-157.
doi: 10.1016/j.amc.2018.12.048. |
[2] |
W. Bu and A. Xiao,
An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions, Numer. Algor., 81 (2019), 529-545.
doi: 10.1007/s11075-018-0559-2. |
[3] |
H. Chen and T. Sun,
A Petrov-Galerkin spectral method for the linearized time fractional KdV equation, Int. J. Comput. Math., 95 (2018), 1292-1307.
doi: 10.1080/00207160.2017.1410544. |
[4] |
Y. Cheng and C.-W. Shu,
A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp., 77 (2008), 699-730.
doi: 10.1090/S0025-5718-07-02045-5. |
[5] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[6] |
B. Cockburn and K. Mustapha,
A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math., 130 (2015), 293-314.
doi: 10.1007/s00211-014-0661-x. |
[7] |
P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, volume 16 of Applied Mathematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2000. |
[8] |
M. Fung,
Kdv equation as an euler-poincare equation, Chinese J. Phys., 35 (1997), 789-796.
|
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981. |
[10] |
R. Hilfer, editor., Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812817747. |
[11] |
C. Huang, N. An and X. Yu,
A fully discrete direct discontinuous Galerkin method for the fractional diffusion-wave equation, Appl. Anal., 97 (2018), 659-675.
doi: 10.1080/00036811.2017.1281407. |
[12] |
C. Huang, M. Stynes and N. An,
Optimal ${L}^\infty ({L}^2)$ error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem, BIT. Numer. Math, 58 (2018), 661-690.
doi: 10.1007/s10543-018-0707-z. |
[13] |
C. Huang, X. Yu, C. Wang, Z. Li and N. An,
A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation, Appl. Math. Comput., 264 (2015), 483-492.
doi: 10.1016/j.amc.2015.04.093. |
[14] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[15] |
Y. Lin and C. Xu,
Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001. |
[16] |
W. McLean,
Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), 123-138.
doi: 10.1017/S1446181111000617. |
[17] |
S. Momani and A. Yıldı rım,
Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Math., 87 (2010), 1057-1065.
doi: 10.1080/00207160903023581. |
[18] |
D. A. Murio,
Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.
doi: 10.1016/j.camwa.2008.02.015. |
[19] |
K. Mustapha and W. McLean,
Discontinuous Galerkin method for an evolution equation with a memory term of positive type, Math. Comp., 78 (2009), 1975-1995.
doi: 10.1090/S0025-5718-09-02234-0. |
[20] |
K. Mustapha and W. McLean,
Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation, IMA J. Numer. Anal., 32 (2012), 906-925.
doi: 10.1093/imanum/drr027. |
[21] |
K. Mustapha, M. Nour and B. Cockburn,
Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems, Adv. Comput. Math., 42 (2016), 377-393.
doi: 10.1007/s10444-015-9428-x. |
[22] |
I. Podlubny, Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. |
[23] |
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. |
[24] |
J. Russell, Report of the committee on waves, Rep. Meet. Brit. Assoc. Adv. Sci., 7th Liverpool, 1837, London, John Murray. Google Scholar |
[25] |
M. Stynes, E. O'Riordan and J. Gracia,
Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079.
doi: 10.1137/16M1082329. |
[26] |
I. Turner, F. Liu, V. Anh and P. Zhuang,
Time fractional advection dispersion equation, J. Appl. Math. Comput., 13 (2003), 233-245.
doi: 10.1007/BF02936089. |
[27] |
L. Wei, Y. He, A. Yildirim and S. Kumar,
Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation, ZAMM Z. Angew. Math. Mech., 93 (2013), 14-28.
doi: 10.1002/zamm.201200003. |
[28] |
G. H. Weiss, R. Klages, G. Radons and I. M. Sokolov (eds.), Anomalous transport: Foundations and applications [book review of WILEY-VCH Verlag GmbH & Co., Weinheim, 2008], J. Stat. Phys., 135 (2009), 389-391.
doi: 10.1007/s10955-009-9713-5. |
[29] |
G. B. Witham, Linear and Nonlinear Waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[30] |
N. Zabusky and M. Kruskal,
Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.
doi: 10.1103/PhysRevLett.15.240. |
[31] |
Q. Zhang, J. Zhang, S. Jiang and Z. Zhang,
Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comput., 87 (2018), 693-719.
doi: 10.1090/mcom/3229. |
show all references
References:
[1] |
N. An, C. Huang and X. Yu,
Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation, Appl. Math. Comput., 349 (2019), 148-157.
doi: 10.1016/j.amc.2018.12.048. |
[2] |
W. Bu and A. Xiao,
An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions, Numer. Algor., 81 (2019), 529-545.
doi: 10.1007/s11075-018-0559-2. |
[3] |
H. Chen and T. Sun,
A Petrov-Galerkin spectral method for the linearized time fractional KdV equation, Int. J. Comput. Math., 95 (2018), 1292-1307.
doi: 10.1080/00207160.2017.1410544. |
[4] |
Y. Cheng and C.-W. Shu,
A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp., 77 (2008), 699-730.
doi: 10.1090/S0025-5718-07-02045-5. |
[5] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[6] |
B. Cockburn and K. Mustapha,
A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math., 130 (2015), 293-314.
doi: 10.1007/s00211-014-0661-x. |
[7] |
P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, volume 16 of Applied Mathematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2000. |
[8] |
M. Fung,
Kdv equation as an euler-poincare equation, Chinese J. Phys., 35 (1997), 789-796.
|
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981. |
[10] |
R. Hilfer, editor., Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812817747. |
[11] |
C. Huang, N. An and X. Yu,
A fully discrete direct discontinuous Galerkin method for the fractional diffusion-wave equation, Appl. Anal., 97 (2018), 659-675.
doi: 10.1080/00036811.2017.1281407. |
[12] |
C. Huang, M. Stynes and N. An,
Optimal ${L}^\infty ({L}^2)$ error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem, BIT. Numer. Math, 58 (2018), 661-690.
doi: 10.1007/s10543-018-0707-z. |
[13] |
C. Huang, X. Yu, C. Wang, Z. Li and N. An,
A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation, Appl. Math. Comput., 264 (2015), 483-492.
doi: 10.1016/j.amc.2015.04.093. |
[14] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[15] |
Y. Lin and C. Xu,
Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001. |
[16] |
W. McLean,
Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), 123-138.
doi: 10.1017/S1446181111000617. |
[17] |
S. Momani and A. Yıldı rım,
Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Math., 87 (2010), 1057-1065.
doi: 10.1080/00207160903023581. |
[18] |
D. A. Murio,
Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138-1145.
doi: 10.1016/j.camwa.2008.02.015. |
[19] |
K. Mustapha and W. McLean,
Discontinuous Galerkin method for an evolution equation with a memory term of positive type, Math. Comp., 78 (2009), 1975-1995.
doi: 10.1090/S0025-5718-09-02234-0. |
[20] |
K. Mustapha and W. McLean,
Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation, IMA J. Numer. Anal., 32 (2012), 906-925.
doi: 10.1093/imanum/drr027. |
[21] |
K. Mustapha, M. Nour and B. Cockburn,
Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems, Adv. Comput. Math., 42 (2016), 377-393.
doi: 10.1007/s10444-015-9428-x. |
[22] |
I. Podlubny, Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. |
[23] |
I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. Dedicated to the 60th anniversary of Prof. Francesco Mainardi. |
[24] |
J. Russell, Report of the committee on waves, Rep. Meet. Brit. Assoc. Adv. Sci., 7th Liverpool, 1837, London, John Murray. Google Scholar |
[25] |
M. Stynes, E. O'Riordan and J. Gracia,
Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079.
doi: 10.1137/16M1082329. |
[26] |
I. Turner, F. Liu, V. Anh and P. Zhuang,
Time fractional advection dispersion equation, J. Appl. Math. Comput., 13 (2003), 233-245.
doi: 10.1007/BF02936089. |
[27] |
L. Wei, Y. He, A. Yildirim and S. Kumar,
Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation, ZAMM Z. Angew. Math. Mech., 93 (2013), 14-28.
doi: 10.1002/zamm.201200003. |
[28] |
G. H. Weiss, R. Klages, G. Radons and I. M. Sokolov (eds.), Anomalous transport: Foundations and applications [book review of WILEY-VCH Verlag GmbH & Co., Weinheim, 2008], J. Stat. Phys., 135 (2009), 389-391.
doi: 10.1007/s10955-009-9713-5. |
[29] |
G. B. Witham, Linear and Nonlinear Waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[30] |
N. Zabusky and M. Kruskal,
Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.
doi: 10.1103/PhysRevLett.15.240. |
[31] |
Q. Zhang, J. Zhang, S. Jiang and Z. Zhang,
Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comput., 87 (2018), 693-719.
doi: 10.1090/mcom/3229. |

N = 32 | N = 64 | N = 128 | N = 256 | | N = 1024 | |
3.0496E-2 | 1.1110E-2 | 3.9235E-3 | 1.3578E-3 | 4.6379E-4 | 1.5729E-4 | |
1.4567 | 1.5016 | 1.5307 | 1.5498 | 1.5600 | ||
3.8341E-2 | 1.5127E-2 | 5.8825E-3 | 2.2665E-3 | 8.6831E-4 | 3.3157E-4 | |
1.3417 | 1.3626 | 1.3759 | 1.3842 | 1.3888 | ||
5.9953E-2 | 2.6607E-2 | 1.1728E-2 | 5.1485E-3 | 2.2540E-3 | 9.8512E-4 | |
1.1720 | 1.1817 | 1.1878 | 1.1916 | 1.1941 |
N = 32 | N = 64 | N = 128 | N = 256 | | N = 1024 | |
3.0496E-2 | 1.1110E-2 | 3.9235E-3 | 1.3578E-3 | 4.6379E-4 | 1.5729E-4 | |
1.4567 | 1.5016 | 1.5307 | 1.5498 | 1.5600 | ||
3.8341E-2 | 1.5127E-2 | 5.8825E-3 | 2.2665E-3 | 8.6831E-4 | 3.3157E-4 | |
1.3417 | 1.3626 | 1.3759 | 1.3842 | 1.3888 | ||
5.9953E-2 | 2.6607E-2 | 1.1728E-2 | 5.1485E-3 | 2.2540E-3 | 9.8512E-4 | |
1.1720 | 1.1817 | 1.1878 | 1.1916 | 1.1941 |
Polynomial | M | Order | Order | ||
5 | 5.3831E-01 | - | 3.2328E-01 | - | |
10 | 7.8579E-02 | 2.7762 | 4.7729E-02 | 2.7598 | |
20 | 9.9319E-03 | 2.9840 | 6.2124E-03 | 2.9416 | |
40 | 1.1426E-04 | 3.1196 | 7.5845E-04 | 3.0340 | |
5 | 1.7236E-02 | - | 1.3819E-02 | - | |
10 | 1.1399E-03 | 3.9184 | 8.7589E-04 | 3.9798 | |
15 | 2.2712E-04 | 3.9406 | 1.7695E-04 | 3.9667 | |
20 | 7.2979E-05 | 3.9418 | 6.1408E-04 | 3.9070 |
Polynomial | M | Order | Order | ||
5 | 5.3831E-01 | - | 3.2328E-01 | - | |
10 | 7.8579E-02 | 2.7762 | 4.7729E-02 | 2.7598 | |
20 | 9.9319E-03 | 2.9840 | 6.2124E-03 | 2.9416 | |
40 | 1.1426E-04 | 3.1196 | 7.5845E-04 | 3.0340 | |
5 | 1.7236E-02 | - | 1.3819E-02 | - | |
10 | 1.1399E-03 | 3.9184 | 8.7589E-04 | 3.9798 | |
15 | 2.2712E-04 | 3.9406 | 1.7695E-04 | 3.9667 | |
20 | 7.2979E-05 | 3.9418 | 6.1408E-04 | 3.9070 |
N = 32 | N = 64 | N = 128 | N = 256 | | N = 1024 | |
2.6605E-2 | 9.8042E-3 | 3.4860E-3 | 1.2119E-3 | 4.1549E-4 | 1.4179E-4 | |
1.4402 | 1.4918 | 1.5243 | 1.5444 | 1.5510 | ||
3.0086E-2 | 1.2002E-2 | 4.6980E-3 | 1.8177E-3 | 6.9850E-4 | 2.6770E-4 | |
1.3258 | 1.3531 | 1.3699 | 1.3797 | 1.3836 | ||
4.1374E-2 | 1.8226E-2 | 7.9818E-3 | 3.4836E-3 | 1.5178E-3 | 6.6104E-4 | |
1.1827 | 1.1912 | 1.1961 | 1.1985 | 1.1992 |
N = 32 | N = 64 | N = 128 | N = 256 | | N = 1024 | |
2.6605E-2 | 9.8042E-3 | 3.4860E-3 | 1.2119E-3 | 4.1549E-4 | 1.4179E-4 | |
1.4402 | 1.4918 | 1.5243 | 1.5444 | 1.5510 | ||
3.0086E-2 | 1.2002E-2 | 4.6980E-3 | 1.8177E-3 | 6.9850E-4 | 2.6770E-4 | |
1.3258 | 1.3531 | 1.3699 | 1.3797 | 1.3836 | ||
4.1374E-2 | 1.8226E-2 | 7.9818E-3 | 3.4836E-3 | 1.5178E-3 | 6.6104E-4 | |
1.1827 | 1.1912 | 1.1961 | 1.1985 | 1.1992 |
Polynomial | M | Order | Order | ||
5 | 3.8931E-01 | - | 2.3483E-01 | - | |
10 | 5.6563E-02 | 2.7829 | 3.4418E-02 | 2.7704 | |
20 | 7.1139E-03 | 2.9911 | 4.4696E-03 | 2.9449 | |
40 | 7.7979E-04 | 3.1894 | 5.4210E-04 | 3.0435 | |
5 | 1.2812E-02 | - | 1.0564E-02 | - | |
10 | 8.3809E-03 | 3.9342 | 6.7270E-04 | 3.9731 | |
15 | 1.6615E-04 | 3.9552 | 1.2940E-04 | 4.0071 | |
20 | 5.3162E-05 | 3.9564 | 4.3749E-05 | 3.9578 |
Polynomial | M | Order | Order | ||
5 | 3.8931E-01 | - | 2.3483E-01 | - | |
10 | 5.6563E-02 | 2.7829 | 3.4418E-02 | 2.7704 | |
20 | 7.1139E-03 | 2.9911 | 4.4696E-03 | 2.9449 | |
40 | 7.7979E-04 | 3.1894 | 5.4210E-04 | 3.0435 | |
5 | 1.2812E-02 | - | 1.0564E-02 | - | |
10 | 8.3809E-03 | 3.9342 | 6.7270E-04 | 3.9731 | |
15 | 1.6615E-04 | 3.9552 | 1.2940E-04 | 4.0071 | |
20 | 5.3162E-05 | 3.9564 | 4.3749E-05 | 3.9578 |
N = 64 | N = 128 | N = 256 | N = 512 | N = 1024 | |
2.4959E-3 | 8.4989E-4 | 2.8741E-4 | 9.6635E-5 | 3.2367E-5 | |
1.5542 | 1.5641 | 1.5720 | 1.5784 | ||
6.0125E-3 | 2.3383E-3 | 8.9915E-4 | 3.4367E-4 | 1.3092E-4 | |
1.3624 | 1.3788 | 1.3875 | 1.3923 | ||
1.0359E-2 | 4.6808E-3 | 2.0899E-3 | 1.2645E-4 | 4.0879E-4 | |
1.1460 | 1.1633 | 1.1736 | 1.1803 |
N = 64 | N = 128 | N = 256 | N = 512 | N = 1024 | |
2.4959E-3 | 8.4989E-4 | 2.8741E-4 | 9.6635E-5 | 3.2367E-5 | |
1.5542 | 1.5641 | 1.5720 | 1.5784 | ||
6.0125E-3 | 2.3383E-3 | 8.9915E-4 | 3.4367E-4 | 1.3092E-4 | |
1.3624 | 1.3788 | 1.3875 | 1.3923 | ||
1.0359E-2 | 4.6808E-3 | 2.0899E-3 | 1.2645E-4 | 4.0879E-4 | |
1.1460 | 1.1633 | 1.1736 | 1.1803 |
N = 64 | N = 128 | N = 256 | N = 512 | N = 1024 | |
6.0380E-3 | 2.2285E-3 | 7.2999E-4 | 2.4866E-4 | 8.4023E-5 | |
1.5110 | 1.5371 | 1.5536 | 1.5653 | ||
1.1214E-2 | 4.4769E-3 | 1.7480E-3 | 6.7438E-4 | 2.5839E-4 | |
1.3248 | 1.3567 | 1.3741 | 1.3839 | ||
1.5602E-2 | 7.0291E-3 | 3.1157E-3 | 1.3694E-3 | 5.9926E-4 | |
1.1503 | 1.1737 | 1.1859 | 1.1923 |
N = 64 | N = 128 | N = 256 | N = 512 | N = 1024 | |
6.0380E-3 | 2.2285E-3 | 7.2999E-4 | 2.4866E-4 | 8.4023E-5 | |
1.5110 | 1.5371 | 1.5536 | 1.5653 | ||
1.1214E-2 | 4.4769E-3 | 1.7480E-3 | 6.7438E-4 | 2.5839E-4 | |
1.3248 | 1.3567 | 1.3741 | 1.3839 | ||
1.5602E-2 | 7.0291E-3 | 3.1157E-3 | 1.3694E-3 | 5.9926E-4 | |
1.1503 | 1.1737 | 1.1859 | 1.1923 |
[1] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[2] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[3] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[4] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[5] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[6] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[7] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[8] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[9] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[10] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[11] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[12] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[13] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[14] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[15] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[16] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[17] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[18] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[19] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[20] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]