-
Previous Article
Bi-center problem and Hopf cyclicity of a Cubic Liénard system
- DCDS-B Home
- This Issue
-
Next Article
Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution
Multi-scale analysis for highly anisotropic parabolic problems
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille UMR 7373, Château Gombert 39 rue F. Joliot Curie, Marseille, 13453, FRANCE |
We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concentrate on heat equations, whose diffusion matrix fields have disparate eigenvalues. We establish strong convergence results toward a profile. Under suitable smoothness hypotheses, by introducing an appropriate corrector term, we estimate the convergence rate. The arguments rely on two-scale analysis, based on average operators with respect to unitary groups.
References:
[1] |
L. Agelas and R. Masson,
Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012.
doi: 10.1016/j.crma.2008.07.015. |
[2] |
D. S. Balsana, D. A. Tilley and C. J. Howk,
Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641.
|
[3] |
T. Blanc, M. Bostan and F. Boyer,
Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676.
doi: 10.3934/dcds.2017200. |
[4] |
M. Bostan,
Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.
doi: 10.1016/j.jde.2010.07.010. |
[5] |
M. Bostan,
Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092.
doi: 10.1016/j.jde.2013.10.008. |
[6] |
M. Bostan,
Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188.
doi: 10.1137/15M1033034. |
[7] |
S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965. |
[8] |
C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009.
doi: 10.1007/978-0-387-09819-7. |
[9] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988. |
[10] |
P. Degond, F. Deluzet and C. Negulescu,
An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666.
doi: 10.1137/090754200. |
[11] |
R. Eymard, T. Gallouët and R. Herbin,
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.
doi: 10.1093/imanum/drn084. |
[12] |
F. Filbet, C. Negulescu and C. Yang,
Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082.
doi: 10.1080/00207160.2012.679732. |
[13] |
E. Freire, A. Gasull and A. Guillamon,
A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222.
doi: 10.4171/RMI/386. |
[14] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972. |
[15] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[16] |
J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp.
doi: 10.1088/1751-8113/41/23/235004. |
[17] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980. |
[18] |
M. Sabatini,
Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99.
|
[19] |
P. Sharma and G. W. Hammett,
A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909.
doi: 10.1016/j.jcp.2011.03.009. |
[20] |
P. Sharma and G. W. Hammett,
Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142.
doi: 10.1016/j.jcp.2007.07.026. |
[21] |
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998. |
show all references
References:
[1] |
L. Agelas and R. Masson,
Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012.
doi: 10.1016/j.crma.2008.07.015. |
[2] |
D. S. Balsana, D. A. Tilley and C. J. Howk,
Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641.
|
[3] |
T. Blanc, M. Bostan and F. Boyer,
Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676.
doi: 10.3934/dcds.2017200. |
[4] |
M. Bostan,
Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.
doi: 10.1016/j.jde.2010.07.010. |
[5] |
M. Bostan,
Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092.
doi: 10.1016/j.jde.2013.10.008. |
[6] |
M. Bostan,
Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188.
doi: 10.1137/15M1033034. |
[7] |
S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965. |
[8] |
C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009.
doi: 10.1007/978-0-387-09819-7. |
[9] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988. |
[10] |
P. Degond, F. Deluzet and C. Negulescu,
An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666.
doi: 10.1137/090754200. |
[11] |
R. Eymard, T. Gallouët and R. Herbin,
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.
doi: 10.1093/imanum/drn084. |
[12] |
F. Filbet, C. Negulescu and C. Yang,
Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082.
doi: 10.1080/00207160.2012.679732. |
[13] |
E. Freire, A. Gasull and A. Guillamon,
A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222.
doi: 10.4171/RMI/386. |
[14] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972. |
[15] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[16] |
J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp.
doi: 10.1088/1751-8113/41/23/235004. |
[17] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980. |
[18] |
M. Sabatini,
Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99.
|
[19] |
P. Sharma and G. W. Hammett,
A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909.
doi: 10.1016/j.jcp.2011.03.009. |
[20] |
P. Sharma and G. W. Hammett,
Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142.
doi: 10.1016/j.jcp.2007.07.026. |
[21] |
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998. |
[1] |
Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 |
[2] |
Stephen W. Taylor. Locally smooth unitary groups and applications to boundary control of PDEs. Evolution Equations and Control Theory, 2013, 2 (4) : 733-740. doi: 10.3934/eect.2013.2.733 |
[3] |
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 |
[4] |
Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103 |
[5] |
Li Wang, Qiang Xu, Shulin Zhou. $ L^p $ Neumann problems in homogenization of general elliptic operators. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5019-5045. doi: 10.3934/dcds.2020210 |
[6] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181 |
[7] |
Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 |
[8] |
Sergio Blanes, Fernando Casas, Alejandro Escorihuela-Tomàs. Applying splitting methods with complex coefficients to the numerical integration of unitary problems. Journal of Computational Dynamics, 2022, 9 (2) : 85-101. doi: 10.3934/jcd.2021022 |
[9] |
Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086 |
[10] |
Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247 |
[11] |
Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677 |
[12] |
Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent. Networks and Heterogeneous Media, 2020, 15 (2) : 281-305. doi: 10.3934/nhm.2020013 |
[13] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[14] |
Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523 |
[15] |
Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055 |
[16] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[17] |
Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028 |
[18] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[19] |
Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017 |
[20] |
Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]