January  2020, 25(1): 335-399. doi: 10.3934/dcdsb.2019186

Multi-scale analysis for highly anisotropic parabolic problems

Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille UMR 7373, Château Gombert 39 rue F. Joliot Curie, Marseille, 13453, FRANCE

* Corresponding author: Mihaï Bostan

Received  February 2018 Revised  February 2019 Published  September 2019

We focus on the asymptotic behavior of strongly anisotropic parabolic problems. We concentrate on heat equations, whose diffusion matrix fields have disparate eigenvalues. We establish strong convergence results toward a profile. Under suitable smoothness hypotheses, by introducing an appropriate corrector term, we estimate the convergence rate. The arguments rely on two-scale analysis, based on average operators with respect to unitary groups.

Citation: Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186
References:
[1]

L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[2]

D. S. BalsanaD. A. Tilley and C. J. Howk, Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641.   Google Scholar

[3]

T. BlancM. Bostan and F. Boyer, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676.  doi: 10.3934/dcds.2017200.  Google Scholar

[4]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[5]

M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092.  doi: 10.1016/j.jde.2013.10.008.  Google Scholar

[6]

M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188.  doi: 10.1137/15M1033034.  Google Scholar

[7]

S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965. Google Scholar

[8]

C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009. doi: 10.1007/978-0-387-09819-7.  Google Scholar

[9]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988.  Google Scholar

[10]

P. DegondF. Deluzet and C. Negulescu, An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666.  doi: 10.1137/090754200.  Google Scholar

[11]

R. EymardT. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.  doi: 10.1093/imanum/drn084.  Google Scholar

[12]

F. FilbetC. Negulescu and C. Yang, Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082.  doi: 10.1080/00207160.2012.679732.  Google Scholar

[13]

E. FreireA. Gasull and A. Guillamon, A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222.  doi: 10.4171/RMI/386.  Google Scholar

[14]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972.  Google Scholar

[15]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.  doi: 10.1109/34.56205.  Google Scholar

[16]

J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp. doi: 10.1088/1751-8113/41/23/235004.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980.  Google Scholar

[18]

M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99.   Google Scholar

[19]

P. Sharma and G. W. Hammett, A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909.  doi: 10.1016/j.jcp.2011.03.009.  Google Scholar

[20]

P. Sharma and G. W. Hammett, Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142.  doi: 10.1016/j.jcp.2007.07.026.  Google Scholar

[21]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998.  Google Scholar

show all references

References:
[1]

L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 346 (2008), 1007-1012.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[2]

D. S. BalsanaD. A. Tilley and C. J. Howk, Simulating anisotropic thermal conduction in supernova remnants-Ⅰ., Numerical methods, Monthly Notices of Royal Astronomical Society, 386 (2008), 627-641.   Google Scholar

[3]

T. BlancM. Bostan and F. Boyer, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4637-4676.  doi: 10.3934/dcds.2017200.  Google Scholar

[4]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[5]

M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential Equations, 256 (2016), 1043-1092.  doi: 10.1016/j.jde.2013.10.008.  Google Scholar

[6]

M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188.  doi: 10.1137/15M1033034.  Google Scholar

[7]

S. I. Braginskii, Transport Processes in a Plasma, M.A. Leontovich, Reviews of Plasma Physics, Consultants Bureau, New York, 1965. Google Scholar

[8]

C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, 2009. doi: 10.1007/978-0-387-09819-7.  Google Scholar

[9]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, vol. 8, Masson, 1988.  Google Scholar

[10]

P. DegondF. Deluzet and C. Negulescu, An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8 (2009/10), 645-666.  doi: 10.1137/090754200.  Google Scholar

[11]

R. EymardT. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.  doi: 10.1093/imanum/drn084.  Google Scholar

[12]

F. FilbetC. Negulescu and C. Yang, Numerical study of a nonlinear heat equation for plasma physics, Int. J. Comput. Math., 89 (2012), 1060-1082.  doi: 10.1080/00207160.2012.679732.  Google Scholar

[13]

E. FreireA. Gasull and A. Guillamon, A characterization of isochronous centers in terms of symmetries, Rev. Mat. Iberoamericana, 20 (2004), 205-222.  doi: 10.4171/RMI/386.  Google Scholar

[14]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. Ⅰ, Springer Berlin Heidelberg, 1972.  Google Scholar

[15]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.  doi: 10.1109/34.56205.  Google Scholar

[16]

J. Quah and D. Margetis, Anisotropic diffusion in continuum relaxation of stepped crystal surfaces, J. Phys. A, 41 (2008), 235004, 18pp. doi: 10.1088/1751-8113/41/23/235004.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. Ⅰ, Functional Analysis, Academic Press, 1980.  Google Scholar

[18]

M. Sabatini, Characterizing isochronous centers by Lie brackets, Differential Equations Dyn. Syst., 5 (1997), 91-99.   Google Scholar

[19]

P. Sharma and G. W. Hammett, A fast semi-implicit method for anisotropic diffusion, J. Comput. Phys., 230 (2011), 4899-4909.  doi: 10.1016/j.jcp.2011.03.009.  Google Scholar

[20]

P. Sharma and G. W. Hammett, Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227 (2007), 123-142.  doi: 10.1016/j.jcp.2007.07.026.  Google Scholar

[21]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart 1998.  Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[4]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[5]

Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[8]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[9]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[10]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[11]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[12]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[13]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[14]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2019 Impact Factor: 1.27

Article outline

[Back to Top]