- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis
On the forward dynamical behavior of nonautonomous systems
1. | College of Mathematical Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China |
2. | School of Mathematics, Tianjin University, Tianjin 300072, China |
3. | Department of Mathematics, School of Science, Civil Aviation University of China, Tianjin 300300, China |
This paper is concerned with the forward dynamical behavior of nonautonomous systems. Under some general conditions, it is shown that in an arbitrary small neighborhood of a pullback attractor of a nonautonomous system, there exists a family of sets $ \{\mathcal{A}_\varepsilon(p)\}_{p\in P} $ of phase space $ X $, which is forward invariant such that $ \{\mathcal {A}_\varepsilon(p)\}_{p\in P} $ uniformly forward attracts each bounded subset of $ X $. Furthermore, we can also prove that $ \{\mathcal{A}_\varepsilon(p)\}_{p\in P} $ forward attracts each bounded set at an exponential rate.
References:
[1] |
A. Y. Abdallah,
Uniformly exponential attractors for first order nonautonomous lattice dynamical systems, J. Diff. Equa., 251 (2011), 1489-1504.
doi: 10.1016/j.jde.2011.05.030. |
[2] |
A. V. Babin and B. Nicolaenko,
Exponential attractor of reaction diffusion systems in an unbounded domain, J. Dyn. Diff. Equa., 7 (1995), 567-590.
doi: 10.1007/BF02218725. |
[3] |
T. Caraballo, J. A. Langa and R. Obaya,
Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations, Nonlinearity, 30 (2017), 274-299.
doi: 10.1088/1361-6544/30/1/274. |
[4] |
A. Carvalho, J. A. Lange and J. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[5] |
A. Carvalho, J. A. Lange, J. Robinson and A. Suárez,
Characterization of nonautonomous attractors of a perturbed gradient system, J. Diff. Equa., 236 (2007), 570-603.
doi: 10.1016/j.jde.2007.01.017. |
[6] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[7] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[8] |
D. Cheban, P. E. Kloeden and B. Schmalfuss,
The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.
|
[9] |
V. V. Chepyzhov, Attractors of Mathematical Physics, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. Google Scholar |
[10] |
V. V. Chepyzhov and M. I. Vishik,
Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.
|
[11] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dyn. Diff. Equa., 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[12] |
R. Czaja,
Pullback exponential attractors with adimissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.
doi: 10.1016/j.na.2014.03.020. |
[13] |
L. Dung and B. Nicolaenko,
Exponential attractors in Banach spaces, J. Dyn. Diff. Equa., 13 (2001), 791-806.
doi: 10.1023/A:1016676027666. |
[14] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, Vol. 37, Wiley, New York, 1994. |
[15] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris, 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[16] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.
doi: 10.1017/S030821050000408X. |
[17] |
M. Efendiev, Y. Yamamoto and A. Yagi,
Exponential attractors for nonautonomous dissipative system, J. Math. Soc. Japan, 63 (2011), 647-673.
|
[18] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981.
doi: 10.1007/BFb0089647. |
[19] |
X. W. Ju, D. S. Li and J. Q. Duan,
Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations, Disc. Contin. Dyn. Syst. B, 24 (2019), 1175-1197.
|
[20] |
X. W. Ju, D.S. Li, C. Q. Li and A. L. Qi, Aproximate forward attractors of the nonautonomous dynamical systems, Chinese Annals of Mathematics, 40 (2019), 541-554. Google Scholar |
[21] |
P. E. Kloeden and T. Lorenz,
Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.
doi: 10.1090/proc/12735. |
[22] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[23] |
R. Temam, Infnite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[24] |
M. I. Vishik, Asymptotic Behavior of Solutions of Evlutionary Equations, Cambridge University Press, Cambriage, England, 1992.
![]() |
[25] |
Y. Wang, D. Li and P. E. Kloeden,
On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59 (2004), 35-53.
doi: 10.1016/j.na.2004.03.035. |
[26] |
Y. S. Zhong and C. K. Zhong,
Exponential attractors for semigroups in Banach spaces, Nonlinear Anal.: Theory, Method & Applications, 75 (2012), 1799-1809.
doi: 10.1016/j.na.2011.09.020. |
[27] |
S. Zhou and X. Han,
Pullback exponential attractors for nonautonomous lattice systems, J. Dyn. Diff. Equa., 24 (2012), 601-631.
doi: 10.1007/s10884-012-9260-7. |
show all references
References:
[1] |
A. Y. Abdallah,
Uniformly exponential attractors for first order nonautonomous lattice dynamical systems, J. Diff. Equa., 251 (2011), 1489-1504.
doi: 10.1016/j.jde.2011.05.030. |
[2] |
A. V. Babin and B. Nicolaenko,
Exponential attractor of reaction diffusion systems in an unbounded domain, J. Dyn. Diff. Equa., 7 (1995), 567-590.
doi: 10.1007/BF02218725. |
[3] |
T. Caraballo, J. A. Langa and R. Obaya,
Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations, Nonlinearity, 30 (2017), 274-299.
doi: 10.1088/1361-6544/30/1/274. |
[4] |
A. Carvalho, J. A. Lange and J. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[5] |
A. Carvalho, J. A. Lange, J. Robinson and A. Suárez,
Characterization of nonautonomous attractors of a perturbed gradient system, J. Diff. Equa., 236 (2007), 570-603.
doi: 10.1016/j.jde.2007.01.017. |
[6] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[7] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[8] |
D. Cheban, P. E. Kloeden and B. Schmalfuss,
The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.
|
[9] |
V. V. Chepyzhov, Attractors of Mathematical Physics, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. Google Scholar |
[10] |
V. V. Chepyzhov and M. I. Vishik,
Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.
|
[11] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dyn. Diff. Equa., 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[12] |
R. Czaja,
Pullback exponential attractors with adimissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.
doi: 10.1016/j.na.2014.03.020. |
[13] |
L. Dung and B. Nicolaenko,
Exponential attractors in Banach spaces, J. Dyn. Diff. Equa., 13 (2001), 791-806.
doi: 10.1023/A:1016676027666. |
[14] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, Vol. 37, Wiley, New York, 1994. |
[15] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris, 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[16] |
M. Efendiev, A. Miranville and S. Zelik,
Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.
doi: 10.1017/S030821050000408X. |
[17] |
M. Efendiev, Y. Yamamoto and A. Yagi,
Exponential attractors for nonautonomous dissipative system, J. Math. Soc. Japan, 63 (2011), 647-673.
|
[18] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981.
doi: 10.1007/BFb0089647. |
[19] |
X. W. Ju, D. S. Li and J. Q. Duan,
Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations, Disc. Contin. Dyn. Syst. B, 24 (2019), 1175-1197.
|
[20] |
X. W. Ju, D.S. Li, C. Q. Li and A. L. Qi, Aproximate forward attractors of the nonautonomous dynamical systems, Chinese Annals of Mathematics, 40 (2019), 541-554. Google Scholar |
[21] |
P. E. Kloeden and T. Lorenz,
Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.
doi: 10.1090/proc/12735. |
[22] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[23] |
R. Temam, Infnite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[24] |
M. I. Vishik, Asymptotic Behavior of Solutions of Evlutionary Equations, Cambridge University Press, Cambriage, England, 1992.
![]() |
[25] |
Y. Wang, D. Li and P. E. Kloeden,
On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59 (2004), 35-53.
doi: 10.1016/j.na.2004.03.035. |
[26] |
Y. S. Zhong and C. K. Zhong,
Exponential attractors for semigroups in Banach spaces, Nonlinear Anal.: Theory, Method & Applications, 75 (2012), 1799-1809.
doi: 10.1016/j.na.2011.09.020. |
[27] |
S. Zhou and X. Han,
Pullback exponential attractors for nonautonomous lattice systems, J. Dyn. Diff. Equa., 24 (2012), 601-631.
doi: 10.1007/s10884-012-9260-7. |
[1] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[2] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[3] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[4] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[5] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[6] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[7] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[8] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[9] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[10] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[11] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[12] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[13] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[14] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[15] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[16] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[17] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[18] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[19] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
[20] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]