January  2020, 25(1): 473-487. doi: 10.3934/dcdsb.2019190

On the forward dynamical behavior of nonautonomous systems

1. 

College of Mathematical Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China

2. 

School of Mathematics, Tianjin University, Tianjin 300072, China

3. 

Department of Mathematics, School of Science, Civil Aviation University of China, Tianjin 300300, China

* Corresponding author: Xuewei Ju

Dedicated to Professor Peter E. Kloeden on the occasion of his 70th birthday

Received  September 2018 Revised  April 2019 Published  September 2019

This paper is concerned with the forward dynamical behavior of nonautonomous systems. Under some general conditions, it is shown that in an arbitrary small neighborhood of a pullback attractor of a nonautonomous system, there exists a family of sets $ \{\mathcal{A}_\varepsilon(p)\}_{p\in P} $ of phase space $ X $, which is forward invariant such that $ \{\mathcal {A}_\varepsilon(p)\}_{p\in P} $ uniformly forward attracts each bounded subset of $ X $. Furthermore, we can also prove that $ \{\mathcal{A}_\varepsilon(p)\}_{p\in P} $ forward attracts each bounded set at an exponential rate.

Citation: Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190
References:
[1]

A. Y. Abdallah, Uniformly exponential attractors for first order nonautonomous lattice dynamical systems, J. Diff. Equa., 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.  Google Scholar

[2]

A. V. Babin and B. Nicolaenko, Exponential attractor of reaction diffusion systems in an unbounded domain, J. Dyn. Diff. Equa., 7 (1995), 567-590.  doi: 10.1007/BF02218725.  Google Scholar

[3]

T. CaraballoJ. A. Langa and R. Obaya, Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations, Nonlinearity, 30 (2017), 274-299.  doi: 10.1088/1361-6544/30/1/274.  Google Scholar

[4]

A. Carvalho, J. A. Lange and J. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

A. CarvalhoJ. A. LangeJ. Robinson and A. Suárez, Characterization of nonautonomous attractors of a perturbed gradient system, J. Diff. Equa., 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[6]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[7]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[8]

D. ChebanP. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.   Google Scholar

[9]

V. V. Chepyzhov, Attractors of Mathematical Physics, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[11]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Equa., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[12]

R. Czaja, Pullback exponential attractors with adimissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.  Google Scholar

[13]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Diff. Equa., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[14]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, Vol. 37, Wiley, New York, 1994.  Google Scholar

[15]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[16]

M. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[17]

M. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dissipative system, J. Math. Soc. Japan, 63 (2011), 647-673.   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[19]

X. W. JuD. S. Li and J. Q. Duan, Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations, Disc. Contin. Dyn. Syst. B, 24 (2019), 1175-1197.   Google Scholar

[20]

X. W. JuD.S. LiC. Q. Li and A. L. Qi, Aproximate forward attractors of the nonautonomous dynamical systems, Chinese Annals of Mathematics, 40 (2019), 541-554.   Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[22]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[23]

R. Temam, Infnite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[24] M. I. Vishik, Asymptotic Behavior of Solutions of Evlutionary Equations, Cambridge University Press, Cambriage, England, 1992.   Google Scholar
[25]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59 (2004), 35-53.  doi: 10.1016/j.na.2004.03.035.  Google Scholar

[26]

Y. S. Zhong and C. K. Zhong, Exponential attractors for semigroups in Banach spaces, Nonlinear Anal.: Theory, Method & Applications, 75 (2012), 1799-1809.  doi: 10.1016/j.na.2011.09.020.  Google Scholar

[27]

S. Zhou and X. Han, Pullback exponential attractors for nonautonomous lattice systems, J. Dyn. Diff. Equa., 24 (2012), 601-631.  doi: 10.1007/s10884-012-9260-7.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Uniformly exponential attractors for first order nonautonomous lattice dynamical systems, J. Diff. Equa., 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.  Google Scholar

[2]

A. V. Babin and B. Nicolaenko, Exponential attractor of reaction diffusion systems in an unbounded domain, J. Dyn. Diff. Equa., 7 (1995), 567-590.  doi: 10.1007/BF02218725.  Google Scholar

[3]

T. CaraballoJ. A. Langa and R. Obaya, Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations, Nonlinearity, 30 (2017), 274-299.  doi: 10.1088/1361-6544/30/1/274.  Google Scholar

[4]

A. Carvalho, J. A. Lange and J. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

A. CarvalhoJ. A. LangeJ. Robinson and A. Suárez, Characterization of nonautonomous attractors of a perturbed gradient system, J. Diff. Equa., 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[6]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[7]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[8]

D. ChebanP. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.   Google Scholar

[9]

V. V. Chepyzhov, Attractors of Mathematical Physics, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[11]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Equa., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[12]

R. Czaja, Pullback exponential attractors with adimissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.  Google Scholar

[13]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Diff. Equa., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[14]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, Vol. 37, Wiley, New York, 1994.  Google Scholar

[15]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[16]

M. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[17]

M. EfendievY. Yamamoto and A. Yagi, Exponential attractors for nonautonomous dissipative system, J. Math. Soc. Japan, 63 (2011), 647-673.   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[19]

X. W. JuD. S. Li and J. Q. Duan, Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations, Disc. Contin. Dyn. Syst. B, 24 (2019), 1175-1197.   Google Scholar

[20]

X. W. JuD.S. LiC. Q. Li and A. L. Qi, Aproximate forward attractors of the nonautonomous dynamical systems, Chinese Annals of Mathematics, 40 (2019), 541-554.   Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[22]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[23]

R. Temam, Infnite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[24] M. I. Vishik, Asymptotic Behavior of Solutions of Evlutionary Equations, Cambridge University Press, Cambriage, England, 1992.   Google Scholar
[25]

Y. WangD. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59 (2004), 35-53.  doi: 10.1016/j.na.2004.03.035.  Google Scholar

[26]

Y. S. Zhong and C. K. Zhong, Exponential attractors for semigroups in Banach spaces, Nonlinear Anal.: Theory, Method & Applications, 75 (2012), 1799-1809.  doi: 10.1016/j.na.2011.09.020.  Google Scholar

[27]

S. Zhou and X. Han, Pullback exponential attractors for nonautonomous lattice systems, J. Dyn. Diff. Equa., 24 (2012), 601-631.  doi: 10.1007/s10884-012-9260-7.  Google Scholar

[1]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[2]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[3]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[6]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[9]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[10]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[11]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[12]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[17]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[18]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[19]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

2019 Impact Factor: 1.27

Article outline

[Back to Top]