-
Previous Article
On steady state of some Lotka-Volterra competition-diffusion-advection model
- DCDS-B Home
- This Issue
-
Next Article
Derivation of cable equation by multiscale analysis for a model of myelinated axons
Input-to-state stability of continuous-time systems via finite-time Lyapunov functions
1. | School of Mathematics and Physics, China University of Geosciences (Wuhan), 430074, Wuhan, China |
In this paper, input-to-state stability (ISS) of continuous-time systems is analyzed via finite-time Lyapunov functions. ISS of a continuous-time system is first proved via finite-time robust Lyapunov functions for an introduced auxiliary system of the considered system. It is then obtained that the existence of a finite-time ISS Lyapunov function implies that the continuous-time system is ISS. The converse finite-time ISS Lyapunov theorem is proposed. Furthermore, we explore the properties of finite-time ISS Lyapunov functions for the continuous-time system on a bounded and compact set without a small neighborhood of the origin. The effectiveness of our results is illustrated by four examples.
References:
[1] |
D. Aeyels and J. Peuteman,
A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Transactions on Automatic Control, 43 (1998), 968-971.
doi: 10.1109/9.701102. |
[2] |
A. Browder, Mathematical Analysis. An introduction, Springer, 1996.
doi: 10.1007/978-1-4612-0715-3. |
[3] |
S. Dashkovskiy, B. Rüffer and F. Wirth, A small-gain type stability criterion for large scale networks of ISS systems, Proc. of 44th IEEE Conference on Decision and Control and European Control Conference (ECC 2005), 2005, 5633–5638. Google Scholar |
[4] |
S. Dashkovskiy, B. Rüffer and F. Wirth, An ISS Lyapunov function for networks of ISS systems, in Proc. 17th Int. Symp. Math. Theory of Networks and Systems (MTNS 2006), Kyoto, Japan, July 24-28, 2006, 77–82. Google Scholar |
[5] |
S. Dashkovskiy, B. Rüffer and F. Wirth,
An ISS small-gain theorem for general networks, Math. Control Signals Systems, 19 (2007), 93-122.
doi: 10.1007/s00498-007-0014-8. |
[6] |
S. Dashkovskiy, B. Rüffer and F. Wirth,
Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM Journal on Control and Optimization, 48 (2010), 4089-4118.
doi: 10.1137/090746483. |
[7] |
A. Doban and M. Lazar, Computation of Lyapunov functions for nonlinear differential equations via a Yoshizawa-type construction, IFAC-PapersOnLine, 49 (2016), 29–34, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016. Google Scholar |
[8] |
R. Geiselhart, Advances in the Stability Analysis of Large-Scale Discrete-Time Systems, PhD thesis, Universität Würzburg, 2015. Google Scholar |
[9] |
R. Geiselhart and F. Wirth,
Solving iterative functional equations for a class of piecewise linear -functions, Journal of Mathematical Analysis and Applications, 411 (2014), 652-664.
doi: 10.1016/j.jmaa.2013.10.016. |
[10] |
R. Geiselhart and F. Wirth,
Relaxed ISS small-gain theorems for discrete-time systems, SIAM Journal on Control and Optimization, 54 (2016), 423-449.
doi: 10.1137/14097286X. |
[11] |
Z.-P. Jiang, I. M. Y. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[12] |
I. Karafyllis,
Can we prove stability by using a positive definite function with non sign-definite derivative?, IMA Journal of Mathematical Control and Information (2012), 29 (2012), 147-170.
doi: 10.1093/imamci/dnr035. |
[13] |
C. Kellett,
A compendium of comparison function results, Math. Control Signals Systems, 26 (2014), 339-374.
doi: 10.1007/s00498-014-0128-8. |
[14] |
M. Lazar, A. I. Doban and N. Athanasopoulos, On stability analysis of discrete-time homogeneous dynamics, in System Theory, Control and Computing (ICSTCC), 2013 17th International Conference, 2013,297–305.
doi: 10.1109/ICSTCC.2013.6688976. |
[15] |
H. Li and A. Liu,
Computation of non-monotonic Lyapunov functions for continuous-time systems, Communications in Nonlinear Science and Numerical Simulation, 50 (2017), 35-50.
doi: 10.1016/j.cnsns.2017.02.017. |
[16] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control and Optimization, 34 (1996), 124–160.
doi: 10.1137/S0363012993259981. |
[17] |
E. D. Sontag,
Comments on integral variants of ISS, Systems Control Lett., 34 (1998), 93-100.
doi: 10.1016/S0167-6911(98)00003-6. |
[18] |
E. D. Sontag,
Further facts about input to state stabilization, IEEE Trans. Automat. Control, 35 (1990), 473-476.
doi: 10.1109/9.52307. |
[19] |
E.D.Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Second Edition., Springer, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[20] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[21] |
E. D. Sontag, Some connections between stabilization and factorization, in Proc. of the 28th IEEE Conference on Decision and Control (CDC 1989), Vol. 1–3 (Tampa, FL, 1989), IEEE, New York, 1989,990–995. |
[22] |
E. D. Sontag and Y. Wang,
New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41 (1996), 1283-1294.
doi: 10.1109/9.536498. |
[23] |
E. D. Sontag and Y. Wang,
On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
show all references
References:
[1] |
D. Aeyels and J. Peuteman,
A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Transactions on Automatic Control, 43 (1998), 968-971.
doi: 10.1109/9.701102. |
[2] |
A. Browder, Mathematical Analysis. An introduction, Springer, 1996.
doi: 10.1007/978-1-4612-0715-3. |
[3] |
S. Dashkovskiy, B. Rüffer and F. Wirth, A small-gain type stability criterion for large scale networks of ISS systems, Proc. of 44th IEEE Conference on Decision and Control and European Control Conference (ECC 2005), 2005, 5633–5638. Google Scholar |
[4] |
S. Dashkovskiy, B. Rüffer and F. Wirth, An ISS Lyapunov function for networks of ISS systems, in Proc. 17th Int. Symp. Math. Theory of Networks and Systems (MTNS 2006), Kyoto, Japan, July 24-28, 2006, 77–82. Google Scholar |
[5] |
S. Dashkovskiy, B. Rüffer and F. Wirth,
An ISS small-gain theorem for general networks, Math. Control Signals Systems, 19 (2007), 93-122.
doi: 10.1007/s00498-007-0014-8. |
[6] |
S. Dashkovskiy, B. Rüffer and F. Wirth,
Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM Journal on Control and Optimization, 48 (2010), 4089-4118.
doi: 10.1137/090746483. |
[7] |
A. Doban and M. Lazar, Computation of Lyapunov functions for nonlinear differential equations via a Yoshizawa-type construction, IFAC-PapersOnLine, 49 (2016), 29–34, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016. Google Scholar |
[8] |
R. Geiselhart, Advances in the Stability Analysis of Large-Scale Discrete-Time Systems, PhD thesis, Universität Würzburg, 2015. Google Scholar |
[9] |
R. Geiselhart and F. Wirth,
Solving iterative functional equations for a class of piecewise linear -functions, Journal of Mathematical Analysis and Applications, 411 (2014), 652-664.
doi: 10.1016/j.jmaa.2013.10.016. |
[10] |
R. Geiselhart and F. Wirth,
Relaxed ISS small-gain theorems for discrete-time systems, SIAM Journal on Control and Optimization, 54 (2016), 423-449.
doi: 10.1137/14097286X. |
[11] |
Z.-P. Jiang, I. M. Y. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[12] |
I. Karafyllis,
Can we prove stability by using a positive definite function with non sign-definite derivative?, IMA Journal of Mathematical Control and Information (2012), 29 (2012), 147-170.
doi: 10.1093/imamci/dnr035. |
[13] |
C. Kellett,
A compendium of comparison function results, Math. Control Signals Systems, 26 (2014), 339-374.
doi: 10.1007/s00498-014-0128-8. |
[14] |
M. Lazar, A. I. Doban and N. Athanasopoulos, On stability analysis of discrete-time homogeneous dynamics, in System Theory, Control and Computing (ICSTCC), 2013 17th International Conference, 2013,297–305.
doi: 10.1109/ICSTCC.2013.6688976. |
[15] |
H. Li and A. Liu,
Computation of non-monotonic Lyapunov functions for continuous-time systems, Communications in Nonlinear Science and Numerical Simulation, 50 (2017), 35-50.
doi: 10.1016/j.cnsns.2017.02.017. |
[16] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control and Optimization, 34 (1996), 124–160.
doi: 10.1137/S0363012993259981. |
[17] |
E. D. Sontag,
Comments on integral variants of ISS, Systems Control Lett., 34 (1998), 93-100.
doi: 10.1016/S0167-6911(98)00003-6. |
[18] |
E. D. Sontag,
Further facts about input to state stabilization, IEEE Trans. Automat. Control, 35 (1990), 473-476.
doi: 10.1109/9.52307. |
[19] |
E.D.Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Second Edition., Springer, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[20] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[21] |
E. D. Sontag, Some connections between stabilization and factorization, in Proc. of the 28th IEEE Conference on Decision and Control (CDC 1989), Vol. 1–3 (Tampa, FL, 1989), IEEE, New York, 1989,990–995. |
[22] |
E. D. Sontag and Y. Wang,
New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41 (1996), 1283-1294.
doi: 10.1109/9.536498. |
[23] |
E. D. Sontag and Y. Wang,
On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
[1] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[2] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[3] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[4] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[5] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[6] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[7] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[8] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[9] |
Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220 |
[10] |
Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002 |
[11] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[12] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021076 |
[13] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[14] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[15] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[18] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[19] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 |
[20] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]